987 resultados para LINEAR ELASTIC FRACTURE MECHANICS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dike swarms consisting of tens to thousands of subparallel dikes are commonly observed at Earth's surface, raising the possibility of simultaneous propagation of two or more dikes at various stages of a swarm's development. The behavior of multiple propagating dikes differs from that of a single dike owing to the interacting stress fields associated with each dike. We analyze an array of parallel, periodically spaced dikes that grow simultaneously from an overpressured source into a semi-infinite, linear elastic host rock. To simplify the analysis, we assume steady state (constant velocity) magma flow and dike propagation. We use a perturbation method to analyze the coupled, nonlinear problem of multiple dike propagation and magma transport. The stress intensity factor at the dike tips and the opening displacements of the dike surfaces are calculated. The numerical results show that dike spacing has a profound effect on the behavior of dike propagation. The stress intensity factors at the tips of parallel dikes decrease with a decrease in dike spacing and are significantly smaller than that for a single dike with the same length. The reduced stress intensity factor indicates that, compared to a single dike, propagation of parallel dikes is more likely to be arrested under otherwise the same conditions. It also implies that fracture toughness of the host rock in a high confining pressure environment may not be as high as inferred from the propagation of a single dike. Our numerical results suggest fracture toughness values on the order of 100 MPa root m. The opening displacements for parallel dikes are smaller than that for a single dike, which results in higher magma pressure gradients in parallel dikes and lower flux of magma transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a fracture-mechanics-based formulation to investigate primary oil migration through the propagation of an array of periodic, parallel fractures in a sedimentary rock with elevated pore fluid pressure. The rock is assumed to be a linearly elastic medium. The fracture propagation and hence oil migration velocity are determined using a fracture mechanics criterion together with the lubrication theory of fluid mechanics. We find that fracture interactions have profound effects on the primary oil migration behavior. For a given fracture length, the mass flux of oil migration decreases dramatically with an increase in fracture density. The reduced oil flux is due to the decreased fracture propagation velocity as well as the narrowed fracture opening that result from the fracture interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents seventy new experimental results from PMMA notched specimens tested under torsion at 60 C. The notch root radius ranges from 0.025 to 7.0 mm. At this temperature the non-linear effects previously observed on specimens of the same material tested at room temperature strongly reduce. The averaged value of the strain energy density over a control volume is used to assess the critical loads to failure. The radius of the control volume and the critical strain energy density are evaluated a priori by using in combination the mode III critical stress intensity factor from cracked-like specimens and the critical stress to failure detected from semicircular notches with a large notch root radius

Relevância:

100.00% 100.00%

Publicador:

Resumo:

If reinforced concrete structures are to be safe under extreme impulsive loadings such as explosions, a broad understanding of the fracture mechanics of concrete under such events is needed. Most buildings and infrastructures which are likely to be subjected to terrorist attacks are borne by a reinforced concrete (RC) structure. Up to some years ago, the traditional method used to study the ability of RC structures to withstand explosions consisted on a choice between handmade calculations, affordable but inaccurate and unreliable, and full scale experimental tests involving explosions, expensive and not available for many civil institutions. In this context, during the last years numerical simulations have arisen as the most effective method to analyze structures under such events. However, for accurate numerical simulations, reliable constitutive models are needed. Assuming that failure of concrete elements subjected to blast is primarily governed by the tensile behavior, a constitutive model has been built that accounts only for failure under tension while it behaves as elastic without failure under compression. Failure under tension is based on the Cohesive Crack Model. Moreover, the constitutive model has been used to simulate the experimental structural response of reinforced concrete slabs subjected to blast. The results of the numerical simulations with the aforementioned constitutive model show its ability of representing accurately the structural response of the RC elements under study. The simplicity of the model, which does not account for failure under compression, as already mentioned, confirms that the ability of reinforced concrete structures to withstand blast loads is primarily governed by tensile strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate two numerical procedures for the Cauchy problem in linear elasticity, involving the relaxation of either the given boundary displacements (Dirichlet data) or the prescribed boundary tractions (Neumann data) on the over-specified boundary, in the alternating iterative algorithm of Kozlov et al. (1991). The two mixed direct (well-posed) problems associated with each iteration are solved using the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method, while the optimal value of the regularization parameter is chosen via the generalized cross-validation (GCV) criterion. An efficient regularizing stopping criterion which ceases the iterative procedure at the point where the accumulation of noise becomes dominant and the errors in predicting the exact solutions increase, is also presented. The MFS-based iterative algorithms with relaxation are tested for Cauchy problems for isotropic linear elastic materials in various geometries to confirm the numerical convergence, stability, accuracy and computational efficiency of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A framework based on the continuum damage mechanics and thermodynamics of irreversible processes using internal state variables is used to characterize the distributed damage in viscoelastic asphalt materials in the form of micro-crack initiation and accumulation. At low temperatures and high deformation rates, micro-cracking is considered as the source of nonlinearity and thus the cause of deviation from linear viscoelastic response. Using a non-associated damage evolution law, the proposed model shows the ability to describe the temperature-dependent processes of micro-crack initiation, evolution and macro-crack formation with good comparison to the material response in the Superpave indirect tensile (IDT) strength test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this thesis is the investigation of the Mode-I fracture mechanics parameters of quasi-brittle materials to shed light onto the influence of the width and size of the specimen on the fracture response of notched beams. To further the knowledge on the fracture process, 3D digital image correlation (DIC) was employed. A new method is proposed to determine experimentally the critical value of the crack opening, which is then used to determine the size of the fracture process zone (FPZ). In addition, the Mode-I fracture mechanics parameters are compared with the Mode-II interfacial properties of composites materials that feature as matrices the quasi-brittle materials studied in Mode-I conditions. To investigate the Mode II fracture parameters, single-lap direct shear tests are performed. Notched concrete beams with six cross-sections has been tested using a three-point bending (TPB) test set-up (Mode-I fracture mechanics). Two depths and three widths of the beam are considered. In addition to concrete beams, alkali-activated mortar beams (AAMs) that differ by the type and size of the aggregates have been tested using the same TPB set-up. Two dimensions of AAMs are considered. The load-deflection response obtained from DIC is compared with the load-deflection response obtained from the readings of two linear variable displacement transformers (LVDT). Load responses, peak loads, strain profiles along the ligament from DIC, fracture energy and failure modes of TPB tests are discussed. The Mode-II problem is investigated by testing steel reinforced grout (SRG) composites bonded to masonry and concrete elements under single-lap direct shear tests. Two types of anchorage systems are proposed for SRG reinforced masonry and concrete element to study their effectiveness. An indirect method is proposed to find the interfacial properties, compare them with the Mode-I fracture properties of the matrix and to model the effect of the anchorage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new two-dimensionally mapped infinite boundary element (IBE) is presented. The formulation is based on a triangular boundary element (BE) with linear shape functions instead of the quadrilateral IBEs usually found in the literature. The infinite solids analyzed are assumed to be three-dimensional, linear-elastic and isotropic, and Kelvin fundamental solutions are employed. One advantage of the proposed formulation over quadratic or higher order elements is that no additional degrees of freedom are added to the original BE mesh by the presence of the IBEs. Thus, the IBEs allow the mesh to be reduced without compromising the accuracy of the result. Two examples are presented, in which the numerical results show good agreement with authors using quadrilateral IBEs and analytical solutions. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a class of two-dimensional problems in classical linear elasticity for which material overlapping occurs in the absence of singularities. Of course, material overlapping is not physically realistic, and one possible way to prevent it uses a constrained minimization theory. In this theory, a minimization problem consists of minimizing the total potential energy of a linear elastic body subject to the constraint that the deformation field must be locally invertible. Here, we use an interior and an exterior penalty formulation of the minimization problem together with both a standard finite element method and classical nonlinear programming techniques to compute the minimizers. We compare both formulations by solving a plane problem numerically in the context of the constrained minimization theory. The problem has a closed-form solution, which is used to validate the numerical results. This solution is regular everywhere, including the boundary. In particular, we show numerical results which indicate that, for a fixed finite element mesh, the sequences of numerical solutions obtained with both the interior and the exterior penalty formulations converge to the same limit function as the penalization is enforced. This limit function yields an approximate deformation field to the plane problem that is locally invertible at all points in the domain. As the mesh is refined, this field converges to the exact solution of the plane problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the development of a hybrid-mixed finite element formulation for the quasi-static geometrically exact analysis of three-dimensional framed structures with linear elastic behavior. The formulation is based on a modified principle of stationary total complementary energy, involving, as independent variables, the generalized vectors of stress-resultants and displacements and, in addition, a set of Lagrange multipliers defined on the element boundaries. The finite element discretization scheme adopted within the framework of the proposed formulation leads to numerical solutions that strongly satisfy the equilibrium differential equations in the elements, as well as the equilibrium boundary conditions. This formulation consists, therefore, in a true equilibrium formulation for large displacements and rotations in space. Furthermore, this formulation is objective, as it ensures invariance of the strain measures under superposed rigid body rotations, and is not affected by the so-called shear-locking phenomenon. Also, the proposed formulation produces numerical solutions which are independent of the path of deformation. To validate and assess the accuracy of the proposed formulation, some benchmark problems are analyzed and their solutions compared with those obtained using the standard two-node displacement/ rotation-based formulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of different precracking methods on the results of linear elastic K(Ic) fracture toughness testing with medium-density polyethylene (MDPE) was investigated. Cryogenic conditions were imposed in order to obtain valid K(Ic) values from specimens of suitable size. Most conservative K(Ic) values were obtained by slow pressing a fresh razor blade at the notch root of the specimen. Due to the low deformation level imposed on the crack tip region, the slow pressing razor blade technique also produced less scatter in fracture toughness results. It has been shown that the slow stable crack growth preceding catastrophic brittle failure during K(Ic) tests in MOPE under cryogenic conditions should not be disregarded as it has relevant physical meaning and may affect the fracture toughness results. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most cellular solids are random materials, while practically all theoretical structure-property results are for periodic models. To be able to generate theoretical results for random models, the finite element method (FEM) was used to study the elastic properties of solids with a closed-cell cellular structure. We have computed the density (rho) and microstructure dependence of the Young's modulus (E) and Poisson's ratio (PR) for several different isotropic random models based on Voronoi tessellations and level-cut Gaussian random fields. The effect of partially open cells is also considered. The results, which are best described by a power law E infinity rho (n) (1<n<2), show the influence of randomness and isotropy on the properties of closed-cell cellular materials, and are found to be in good agreement with experimental data. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interlaminar fracture toughness in pure mode II (GIIc) of a Carbon-Fibre Reinforced Plastic (CFRP) composite is characterized experimentally and numerically in this work, using the End-Notched Flexure (ENF) fracture characterization test. The value of GIIc was extracted by a new data reduction scheme avoiding the crack length measurement, named Compliance-Based Beam Method (CBBM). This method eliminates the crack measurement errors, which can be non-negligible, and reflect on the accuracy of the fracture energy calculations. Moreover, it accounts for the Fracture Process Zone (FPZ) effects. A numerical study using the Finite Element Method (FEM) and a triangular cohesive damage model, implemented within interface finite elements and based on the indirect use of Fracture Mechanics, was performed to evaluate the suitability of the CBBM to obtain GIIc. This was performed comparing the input values of GIIc in the numerical models with the ones resulting from the application of the CBBM to the numerical load-displacement (P-) curve. In this numerical study, the Compliance Calibration Method (CCM) was also used to extract GIIc, for comparison purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of adhesive joints has increased in recent decades due to its competitive features compared with traditional methods. This work aims to estimate the tensile critical strain energy release rate (GIC) of adhesive joints by the Double-Cantilever Beam (DCB) test. The J-integral is used since it enables obtaining the tensile Cohesive Zone Model (CZM) law. An optical measuring method was developed for assessing the crack tip opening (δn) and adherends rotation (θo). The proposed CZM laws were best approximated by a triangular shape for the brittle adhesive and a trapezoidal shape for the two ductile adhesives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The determination of characteristic cardiac parameters, such as displacement, stress and strain distribution are essential for an understanding of the mechanics of the heart. The calculation of these parameters has been limited until recently by the use of idealised mathematical representations of biventricular geometries and by applying simple material laws. On the basis of 20 short axis heart slices and in consideration of linear and nonlinear material behaviour we have developed a FE model with about 100,000 degrees of freedom. Marching Cubes and Phong's incremental shading technique were used to visualise the three dimensional geometry. In a quasistatic FE analysis continuous distribution of regional stress and strain corresponding to the endsystolic state were calculated. Substantial regional variation of the Von Mises stress and the total strain energy were observed at all levels of the heart model. The results of both the linear elastic model and the model with a nonlinear material description (Mooney-Rivlin) were compared. While the stress distribution and peak stress values were found to be comparable, the displacement vectors obtained with the nonlinear model were generally higher in comparison with the linear elastic case indicating the need to include nonlinear effects.