949 resultados para LIMB ISCHEMIA
Resumo:
Inhalation anesthesia with isoflurane is a well-established and safe method used in small laboratory animals. In most cases oxygen is used as a carrier gas for isoflurane, but room air or mixtures of oxygen with air or nitrous oxide are also being used. Anesthesia is therefore administered using different fractions of inspired oxygen (FiO2), and this may have consequences for the outcome of experiments. The aim of the present study was to investigate the influence of FiO2 on rat hind limb ischemia/reperfusion injury and to refine the used inhalation anesthesia. Male Wistar rats were subjected to 3.5 h of ischemia and 2 h of reperfusion, and divided into three groups according to FiO2 in the O2/air/isoflurane anesthesia gas mixture: 40%, 60%, and 100% O2. Normal, healthy rats were used as controls. Muscle edema and creatine kinase MM, a marker for myocyte necrosis, were significantly increased with 40% FiO2 as compared with 100% FiO2 (P<0.05). Partial pressure of oxygen, oxygen saturation, and oxyhemoglobin were significantly higher in the 100% O2 group as compared with 40% O2. No significant differences were detected for other parameters, such as the oxidative stress markers malondialdehyde and superoxide dismutase. We conclude that a refined inhalation anesthesia setting using 40% FiO2, reflecting more or less the clinical situation, leads to a more severe and more physiologically relevant reperfusion injury than higher FiO2. Oxidative stress did not correlate with FiO2 and seemed to have no influence on reperfusion injury.
Resumo:
OBJECTIVE Recent small single-center data indicate that the current hemodynamic parameters used to diagnose critical limb ischemia are insensitive. We investigated the validity of the societal guidelines-recommended hemodynamic parameters against core laboratory-adjudicated angiographic data from the multicenter IN.PACT DEEP (RandomIzed AmPhirion DEEP DEB vs StAndard PTA for the treatment of below the knee Critical limb ischemia) Trial. METHODS Of the 358 patients in the IN.PACT DEEP Trial to assess drug-eluting balloon vs standard balloon angioplasty for infrapopliteal disease, 237 had isolated infrapopliteal disease with an available ankle-brachial index (ABI), and only 40 of the latter had available toe pressure measurements. The associations between ABI, ankle pressure, and toe pressure with tibial runoff, Rutherford category, and plantar arch were examined according to the cutoff points recommended by the societal guidelines. Abnormal tibial runoff was defined as severely stenotic (≥70%) or occluded and scored as one-, two-, or three-vessel disease. A stenotic or occluded plantar arch was considered abnormal. RESULTS Only 14 of 237 patients (6%) had an ABI <0.4. Abnormal ankle pressure, defined as <50 mm Hg if Rutherford category 4 and <70 mm Hg if Rutherford category 5 or 6, was found only in 37 patients (16%). Abnormal toe pressure, defined as <30 mm Hg if Rutherford category 4 and <50 mm Hg if Rutherford category 5 or 6, was found in 24 of 40 patients (60%) with available measurements. Importantly, 29% of these 24 patients had an ABI within normal reference ranges. A univariate multinomial logistic regression found no association between the above hemodynamic parameters and the number of diseased infrapopliteal vessels. However, there was a significant paradoxic association where patients with Rutherford category 6 had higher ABI and ankle pressure than those with Rutherford category 5. Similarly, there was no association between ABI and pedal arch patency. CONCLUSIONS The current recommended hemodynamic parameters fail to identify a significant portion of patients with lower extremity ulcers and angiographically proven severe disease. Toe pressure has better sensitivity and should be considered in all patients with critical limb ischemia.
Resumo:
Glutaredoxin-1 (Glrx) is a cytosolic enzyme that regulates diverse cellular function by removal of GSH adducts from S-glutathionylated proteins including signaling molecules and transcription factors. Glrx is up-regulated during inflammation and diabetes. Glrx overexpression inhibits VEGF-induced endothelial cell (EC) migration. The aim was to investigate the role of up-regulated Glrx in EC angiogenic capacities and in vivo revascularization in the setting of hind limb ischemia. Glrx overexpressing EC from Glrx transgenic mice (TG) showed impaired migration and network formation and secreted higher level of soluble VEGF receptor 1 (sFlt), an antagonizing factor to VEGF. After hind limb ischemia surgery Glrx TG mice demonstrated impaired blood flow recovery, associated with lower capillary density and poorer limb motor function compared to wild type littermates. There were also higher levels of anti-angiogenic sFlt expression in the muscle and plasma of Glrx TG mice after surgery. Non-canonical Wnt5a is known to induce sFlt. Wnt5a was highly expressed in ischemic muscles and EC from Glrx TG mice, and exogenous Wnt5a induced sFlt expression and inhibited network formation in human microvascular EC. Adenoviral Glrx-induced sFlt in EC was inhibited by a competitive Wnt5a inhibitor. Furthermore, Glrx overexpression removed GSH adducts on p65 in ischemic muscle and EC, and enhanced nuclear factor kappa B (NF-kB) activity which was responsible for Wnt5a-sFlt induction. Taken together, up-regulated Glrx induces sFlt in EC via NF-kB -dependent Wnt5a, resulting in attenuated revascularization in hind limb ischemia. The Glrx-induced sFlt may be a part of mechanism of redox regulated VEGF signaling.
Resumo:
We evaluated nonreversed vein grafts in above-knee bypasses for chronic critical limb ischemia in a retrospective study with intention-to-treat analysis in patients who underwent above-knee bypass grafting. During a 4-year period, 51 patients (men, 32; women, 19; mean age 66 years) with 53 critically ischemic lower extremities underwent above-knee femoropopliteal bypass grafting. The follow-up evaluation consisted of clinical examination, assessment of the ankle- brachial systolic blood pressure index, and, whenever necessary, duplex scanning. Three ( 5.7%) deaths occurred within 30 days, two from myocardial infarction and one from an undetermined cause. The 2-year cumulative success rate was 82.5 +/- 9.6% for primary patency, 84.6 +/- 8.9% for secondary patency, 90.1 +/- 7.3% for tertiary patency, 86.9 +/- 7.6% for limb salvage, 77.7 +/- 8.4% for survival, 68.0 +/- 11.1% for composite patency, and 68.4 +/- 9.3% for amputation- free survival; the corresponding estimates for vein grafts alone were 86.6 +/- 9.2%, 88.9 +/- 8.6%, 89.0 +/- 8.5%, 88.1 +/- 8.1%, 81.1 +/- 9.1, 76.8 +/- 11.1%, and 72.6 +/- 10.2%. Three prosthetic grafts failed and were replaced with an arm vein graft. Nonreversed vein bypass grafts in above- knee revascularization of critically ischemic limbs are justified.
Resumo:
Aim. Some stable prostaglandin analogues such as alprostadil have been used to attenuate the deleterious effects of ischemia and reperfusion injury. The aim of this paper was to test if alprostadil can decrease the ischemia- reperfusion injury in rat skeletal muscle using muscular enzymes as markers, such as aspartate aminotransferase (AST), creatine kinase (CPK), lactate dehydrogenase (LDH); degeneration products of cell membrane-malondialdehyde (MDA) and muscle glycogen storage. Methods. Thirty male Wistar rats were used in a model of hind limb ischemia achieved by infrarenal aortic cross-clamping. The animals were randomized into three equal groups (N=10) submitted to 5 hours of ischemia followed by one hour of reperfusion. The first group (control) received continuous intravenous infusion of saline solution and the second group (preischemia, GPI) received continuous intravenous infusion of alprostadil throughout the experiment starting 20 minutes before the aortic cross-clamping. The third group, prereperfusion (GPR), received alprostadil only during the reperfusion period, with intravenous infusion being started 10 min before the clamp release. Results. There was no difference in CPK, LDH, AST or tissue glycogen values between groups. However, a significant elevation in MDA was observed in the GPI and GPR groups compared to the control group, with no difference between the GPI and GPR. Conclusion. Under conditions of partial skeletal muscle ischemia, alprostadil did not reduce the release of muscular enzymes, the consumption of tissue glycogen or the effects of ischemia and reperfusion on the cell membrane, characterized by lipid peroxidation.
Resumo:
Ischemic preconditioning (IPC), a strategy used to attenuate ischemia-reperfusion injury, consists of brief ischemic periods, each followed by reperfusion, prior to a sustained ischemic insult. The purpose of the present study was to evaluate the local and systemic anti-inflammatory effects of hind limb IPC in male Wistar rat (200-250 g) models of acute inflammation. IPC was induced with right hind limb ischemia for 10 min by placing an elastic rubber band tourniquet on the proximal part of the limb followed by 30 min of reperfusion. Groups (N = 6-8) were submitted to right or left paw edema (PE) with carrageenan (100 µg) or Dextran (200 µg), hemorrhagic cystitis with ifosfamide (200 mg/kg, ip) or gastric injury (GI) with indomethacin (20 mg/kg, vo). Controls received similar treatments, without IPC (Sham-IPC). PE is reported as variation of paw volume (mL), vesical edema (VE) as vesical wet weight (mg), vascular permeability (VP) with Evans blue extravasation (µg), GI with the gastric lesion index (GLI; total length of all erosions, mm), and neutrophil migration (NM) from myeloperoxidase activity. The statistical significance (P < 0.05) was determined by ANOVA, followed by the Tukey test. Carrageenan or Dextran-induced PE and VP in either paw were reduced by IPC (42-58.7%). IPC inhibited VE (38.8%) and VP (54%) in ifosfamide-induced hemorrhagic cystitis. GI and NM induced by indomethacin were inhibited by IPC (GLI: 90.3%; NM: 64%). This study shows for the first time that IPC produces local and systemic anti-inflammatory effects in models of acute inflammation other than ischemia-reperfusion injury.
Resumo:
OBJECTIVES: The clinical significance of ischemia/reperfusion of the lower extremities demands further investigation to enable the development of more effective therapeutic alternatives. This study investigated the changes in the vascular reactivity of the rabbit femoral artery and nitric oxide metabolites under partial ischemia/reperfusion conditions following cilostazol administration. METHODS: Ischemia was induced using infrarenal aortic clamping. The animals were randomly divided into seven groups: Control 90 minutes, Ischemia/Reperfusion 90/60 minutes, Control 120 minutes, Ischemia/Reperfusion 120/90 minutes, Cilostazol, Cilostazol before Ischemia/Reperfusion 120/90 minutes, and Ischemia 120 minutes/Cilostazol/Reperfusion 90 minutes. Dose-response curves for sodium nitroprusside, acetylcholine, and the calcium ionophore A23187 were obtained in isolated femoral arteries. The levels of nitrites and nitrates in the plasma and skeletal muscle were determined using chemiluminescence. RESULTS: Acetylcholine- and A23187-induced relaxation was reduced in the Ischemia/Reperfusion 120/90 group, and treatment with cilostazol partially prevented this ischemia/reperfusion-induced endothelium impairment. Only cilostazol treatment increased plasma levels of nitrites and nitrates. An elevation in the levels of nitrites and nitrates was observed in muscle tissues in the Ischemia/Reperfusion 120/90, Cilostazol/Ischemia/Reperfusion, and Ischemia/Cilostazol/Reperfusion groups. CONCLUSION: Hind limb ischemia/reperfusion yielded an impaired endothelium-dependent relaxation of the femoral artery. Furthermore, cilostazol administration prior to ischemia exerted a protective effect on endothelium-dependent vascular reactivity under ischemia/reperfusion conditions.
Resumo:
OBIETTIVO : Quantificare le CECs/ml nei pazienti affetti da ischemia critica (IC) degli arti inferiori, eventuali correlazioni tra i fattori di rischio, lo stadio clinico con l’ aumento delle CECs. Valutare i cambiamenti strutturali (calcificazione ed infiltratto infiammatorio) e l’ angiogenesi (numero di capillari /sezione) della parete arteriosa. MATERIALI E METODI: Da Maggio 2006 ad Aprile 2008 in modo prospettico abbiamo arruolato paziente affetti da IC da sottoporre ad intervento chirurgico. In un data base abbiamo raccolto : caratteristiche demografiche, fattori di rischio, stadiazione dell'IC secondo Leriche-Fontaine (L-F), il tipo di intervento chirurgico. Per ogni paziente abbiamo effettuato un prelievo ematico di 2 ml per la quantificazione immunomagnetica delle CECs e prelievo di parete arteriosa. RISULTATI: In modo consecutivo abbiamo arruolato 33 pazienti (75.8% maschi) con età media di 71 aa (range 34-91aa), affetti da arteriopatia ostruttiva cronica periferica al IV stadio di L-F nel 84.8%, da cardiopatia ischemica cronica nel 60.6%, da ipertensione arteriosa nel 72.7% e da diabete mellito di II tipo nel 66.6%. Il valore medio di CECs/ml è risultato significativamente più elevato (p= 0.001) nei soggetti affetti da IC (CECs/ml =531.24 range 107- 3330) rispetto ai casi controllo (CECs/ml = 125.8 range 19-346 ). Le CECs/ml nei pazienti diabetici sono maggiori rispetto alle CECs/ml nei pazienti non diabetici ( 726.7 /ml vs 325.5/ml ), p< 0.05 I pazienti diabetici hanno presentato maggior incidenza di lesioni arteriose complesse rispetto ai non diabetici (66% vs 47%) e minor densità capillare (65% vs 87%). Conclusioni : Le CECs sono un marker sierologico attendibile di danno vascolare parietale, la loro quantità è maggiore nei pazienti diabetici e ipertesi. La minor capacità angiogenetica della parete arteriosa in presenza di maggior calcificazioni ed infiltrato infiammatorio nei diabetici, dimostra un danno istopatologico di parete maggiore .
Resumo:
PURPOSE: To prospectively determine reproducibility of magnetic resonance (MR) angiography and MR spectroscopy of deoxymyoglobin in assessment of collateral vessels and tissue perfusion in patients with critical limb ischemia (CLI) and to follow changes in patients undergoing intramuscular vascular endothelial growth factor (pVEGF)-C gene therapy, percutaneous transluminal angioplasty, supervised exercise training, or no therapy. MATERIALS AND METHODS: Study and gene therapy protocols were approved, and all patients gave written informed consent. To determine repeatability and reproducibility, seven patients underwent MR angiography and five underwent MR spectroscopy. The techniques were used to judge disease progress in 12 other patients with or without therapy: MR angiography to help determine change in visualization of collateral vessels and MR spectroscopy to help assess change in perfusion at proximal and distal calf levels. MR angiographic results were subjectively analyzed by three blinded readers. Intraobserver variability was expressed as 95% confidence interval (CI) (n=7); interobserver variability, as kappa statistic (n=15). Reexamination variability of MR spectroscopy was given as 95% CI for subsequent recovery times, and correlation with disease extent was calculated with Kendall taub rank correlation. Fisher-Yates test was used to correlate changes with pressure measurements and clinical course. RESULTS: Intraobserver and interobserver concordance was sensitive for detection of collateral vessels. Intraobserver agreement was 85.7% (95% CI: 42.1%, 99.6%). Interobserver agreement was high for small collateral vessels (kappa=0.74, P <.001) and fair for large collateral vessels (kappa=0.36, P=.002). MR spectroscopy was reproducible (95% CI: +/-26 seconds for proximal, +/-21 seconds for distal) and showed a correlation with disease extent (proximal calf, taub=0.84, P <.001; distal calf, taub=0.68, P=.04). Small collateral vessels increased over time (P=.04) but did not correlate with pressure measurements and clinical course. Recovery time correlated with clinical course (proximal calf, P=.03; distal calf, P=.005). CONCLUSION: MR angiography and MR spectroscopy of deoxymyoglobin can help document changes in visualization of collateral vessels and tissue perfusion in patients with CLI.
Resumo:
Several patients with chronic critical limb ischemia show angiographically an isolated popliteal segment (IPS) and a single calf vessel (SCV) with no direct communication to the former. In this situation a bypass can be inserted from the common femoral artery to the IPS or to the SCV. The results of 73 bypass procedures--40 to an isolated popliteal segment and 33 to a single calf vessel for limb salvage--were prospectively evaluated. Eighty percent of the grafts were performed with an autogenous saphenous vein (ASV), the rest with a thin wall polytetrafluoroethylene (PTFE) prosthesis. The mean age of our patients was 75 years and many suffered from cardiovascular disease. The operative mortality rate was 3% and the mean postoperative survival 32 months. Three year patency and limb salvage rates for ASV grafts was 83% and 87% (IPS) respectively 77% and 76% (MCV); for PTFE grafts 58% and 88% (IPS) respectively 17% and 50% (MCV). There was no significant difference found in patency and limb salvage rates of the two procedures if the graft was an autogenous saphenous vein (p > 0.05). The PTFE prosthesis was only suitable for grafts inserted to the isolated popliteal segment.
C1 esterase inhibitor reduces lower extremity ischemia/reperfusion injury and associated lung damage
Resumo:
BACKGROUND Ischemia/reperfusion injury of lower extremities and associated lung damage may result from thrombotic occlusion, embolism, trauma, or surgical intervention with prolonged ischemia and subsequent restoration of blood flow. This clinical entity is characterized by high morbidity and mortality. Deprivation of blood supply leads to molecular and structural changes in the affected tissue. Upon reperfusion inflammatory cascades are activated causing tissue injury. We therefore tested preoperative treatment for prevention of reperfusion injury by using C1 esterase inhibitor (C1 INH). METHODS AND FINDINGS Wistar rats systemically pretreated with C1 INH (n = 6), APT070 (a membrane-targeted myristoylated peptidyl construct derived from human complement receptor 1, n = 4), vehicle (n = 7), or NaCl (n = 8) were subjected to 3h hind limb ischemia and 24h reperfusion. The femoral artery was clamped and a tourniquet placed under maintenance of a venous return. C1 INH treated rats showed significantly less edema in muscle (P<0.001) and lung and improved muscle viability (P<0.001) compared to controls and APT070. C1 INH prevented up-regulation of bradykinin receptor b1 (P<0.05) and VE-cadherin (P<0.01), reduced apoptosis (P<0.001) and fibrin deposition (P<0.01) and decreased plasma levels of pro-inflammatory cytokines, whereas deposition of complement components was not significantly reduced in the reperfused muscle. CONCLUSIONS C1 INH reduced edema formation locally in reperfused muscle as well as in lung, and improved muscle viability. C1 INH did not primarily act via inhibition of the complement system, but via the kinin and coagulation cascade. APT070 did not show beneficial effects in this model, despite potent inhibition of complement activation. Taken together, C1 INH might be a promising therapy to reduce peripheral ischemia/reperfusion injury and distant lung damage in complex and prolonged surgical interventions requiring tourniquet application.
Resumo:
Prolonged ischemia of skeletal muscle tissue, followed by reperfusion, leads to ischemia/reperfusion injury (IRI), which is a feared local and systemic inflammatory reaction. With respect to the 3Rs, we wanted to determine which parameters for assessment of IRI require a reperfusion time of 24 h and for which 2 h of reperfusion are sufficient. Rats were subjected to 3 h of hind limb ischemia and 2 h or 24 h of reperfusion. Human plasma derived C1 inhibitor was used as a drug to prevent reperfusion injury. For 2 h of reperfusion the rats stayed under anesthesia throughout (severity grade 1), whereas for 24 h they were awake under analgesia during reperfusion (grade 2). The femoral artery was clamped and a tourniquet was placed, under maintenance of venous return. C1 esterase inhibitor was systemically administered 5 min before the induction of ischemia. No differences in local muscle edema formation and depositions of immunoglobulin G and immunoglobulin M were observed between 2 h and 24 h (P > 0.05), whereas lung edema was only observed after 24 h. Muscle viability was significantly lower after 24 h vs 2 h reperfusion (P < 0.05). Increased plasma creatine kinase (CK)-MM and platelet-derived growth factor (PDGF)-bb could be detected after 2 h, but not after 24 h of reperfusion. By contrast, depositions of C3b/c and fibrin in muscle were only detected after 24 h (P < 0.001). In conclusion, for a first screening of drug candidates to reduce IRI, 2 h reperfusions are sufficient, and these reduce the severity of the animal experiment. Twenty-four-hour reperfusions are only needed for in-depth analysis of the mechanisms of IRI, including lung damage.
Resumo:
Questo studio si concentra sull'ischemia critica cronica dell'arto inferiore (CLTI), una patologia globale con gravi complicanze e impatto sociale elevato. Recentemente, la "Medial Artery Calcification" (MAC) è emersa come fattore prognostico significativo nei pazienti con CLTI e malattia grave dei vasi del piede, ma le informazioni sono principalmente retrospettive. Questa tesi esplora la relazione tra MAC e CLTI in tre sezioni. Nella sezione clinica, 248 pazienti sono stati divisi in gruppi MAC per valutare l'impatto prospettico sulla guarigione e sul salvataggio dell'arto. Nella sezione isto-patologica, campioni arteriosi di 26 pazienti sottoposti ad amputazione maggiore sono stati analizzati per comprendere la relazione tra MAC, aterosclerosi e occlusione vascolare. Nella sezione di arterializzazione, 16 pazienti sottoposti all'arterializzazione delle vene del piede (AVP) sono stati esaminati per valutare i risultati clinici prospettici. I risultati della sezione clinica indicano che la presenza di MAC severa è associata a risultati clinici peggiori nei pazienti affetti da CLTI. L'analisi isto-patologica mostra una prevalenza elevata di MAC rispetto all'aterosclerosi, con una associazione importante tra MAC e iperplasia intimale. L'AVP presenta risultati promettenti nei pazienti affetti da CLTI. In conclusione, la MAC influisce sui risultati clinici della CLTI, e l'AVP potrebbe essere una strategia efficace di trattamento.
Resumo:
The main objective of this study was to compare clinical and laboratory data obtained from patients with primary antiphospholipid syndrome (PAPS) with and without Sneddon`s syndrome (SS). A transverse study with 54 (85.2% female) PAPS patients (Sapporo criteria) was performed. Demographic, drug use, and antiphospholipid antibodies data were evaluated, as well as clinical and laboratory findings of SS. Patients were subdivided into one of two groups: PAPS with SS and PAPS without SS. Both groups were similar with respect to age (p = 0.05), gender (p = 0.34), race (p = 0.31), weight (p = 0.93), height (p = 0.27), and body mass index (p = 0.75); however, the SS group exhibited higher disease duration (96.0 +/- A 54.9 vs. 55.2 +/- A 52.0 months, p = 0.01). By definition, all PAPS with SS patients suffer from stroke, an arterial event; the frequency of stroke events (28.5 vs. 7.5%, p = 0.04), as well as of limb ischemia (100 vs. 30.0%, p < 0.0001) was higher in this group than in the PAPS without SS group. On the other hand, patients in the PAPS without SS group had more venous events, such as deep venous thrombosis, than those in the PAPS with SS group (80.0 vs. 50.0%, p = 0.03). In conclusion, an understanding of the relationship between APS and SS is important in order to identify a subgroup for which more rigorous accompaniment and therapy may be necessary.