909 resultados para LHC, CMS, Grid computing, distributed analysis, top physics, Higgs physics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Al Large Hadron Collider (LHC) ogni anno di acquisizione dati vengono raccolti più di 30 petabyte di dati dalle collisioni. Per processare questi dati è necessario produrre un grande volume di eventi simulati attraverso tecniche Monte Carlo. Inoltre l'analisi fisica richiede accesso giornaliero a formati di dati derivati per centinaia di utenti. La Worldwide LHC Computing GRID (WLCG) è una collaborazione interazionale di scienziati e centri di calcolo che ha affrontato le sfide tecnologiche di LHC, rendendone possibile il programma scientifico. Con il prosieguo dell'acquisizione dati e la recente approvazione di progetti ambiziosi come l'High-Luminosity LHC, si raggiungerà presto il limite delle attuali capacità di calcolo. Una delle chiavi per superare queste sfide nel prossimo decennio, anche alla luce delle ristrettezze economiche dalle varie funding agency nazionali, consiste nell'ottimizzare efficientemente l'uso delle risorse di calcolo a disposizione. Il lavoro mira a sviluppare e valutare strumenti per migliorare la comprensione di come vengono monitorati i dati sia di produzione che di analisi in CMS. Per questa ragione il lavoro è comprensivo di due parti. La prima, per quanto riguarda l'analisi distribuita, consiste nello sviluppo di uno strumento che consenta di analizzare velocemente i log file derivanti dalle sottomissioni di job terminati per consentire all'utente, alla sottomissione successiva, di sfruttare meglio le risorse di calcolo. La seconda parte, che riguarda il monitoring di jobs sia di produzione che di analisi, sfrutta tecnologie nel campo dei Big Data per un servizio di monitoring più efficiente e flessibile. Un aspetto degno di nota di tali miglioramenti è la possibilità di evitare un'elevato livello di aggregazione dei dati già in uno stadio iniziale, nonché di raccogliere dati di monitoring con una granularità elevata che tuttavia consenta riprocessamento successivo e aggregazione “on-demand”.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis work, a cosmic-ray telescope was set up in the INFN laboratories in Bologna using smaller size replicas of CMS Drift Tubes chambers, called MiniDTs, to test and develop new electronics for the CMS Phase-2 upgrade. The MiniDTs were assembled in INFN National Laboratory in Legnaro, Italy. Scintillator tiles complete the telescope, providing a signal independent of the MiniDTs for offline analysis. The telescope readout is a test system for the CMS Phase-2 upgrade data acquisition design. The readout is based on the early prototype of a radiation-hard FPGA-based board developed for the High Luminosity LHC CMS upgrade, called On Board electronics for Drift Tubes. Once the set-up was operational, we developed an online monitor to display in real-time the most important observables to check the quality of the data acquisition. We performed an offline analysis of the collected data using a custom version of CMS software tools, which allowed us to estimate the time pedestal and drift velocity in each chamber, evaluate the efficiency of the different DT cells, and measure the space and time resolution of the telescope system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scheduling parallel and distributed applications efficiently onto grid environments is a difficult task and a great variety of scheduling heuristics has been developed aiming to address this issue. A successful grid resource allocation depends, among other things, on the quality of the available information about software artifacts and grid resources. In this article, we propose a semantic approach to integrate selection of equivalent resources and selection of equivalent software artifacts to improve the scheduling of resources suitable for a given set of application execution requirements. We also describe a prototype implementation of our approach based on the Integrade grid middleware and experimental results that illustrate its benefits. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a method for predicting resource availability in opportunistic grids by means of use pattern analysis (UPA), a technique based on non-supervised learning methods. This prediction method is based on the assumption of the existence of several classes of computational resource use patterns, which can be used to predict the resource availability. Trace-driven simulations validate this basic assumptions, which also provide the parameter settings for the accurate learning of resource use patterns. Experiments made with an implementation of the UPA method show the feasibility of its use in the scheduling of grid tasks with very little overhead. The experiments also demonstrate the method`s superiority over other predictive and non-predictive methods. An adaptative prediction method is suggested to deal with the lack of training data at initialization. Further adaptative behaviour is motivated by experiments which show that, in some special environments, reliable resource use patterns may not always be detected. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power Systems (PS), have been affected by substantial penetration of Distributed Generation (DG) and the operation in competitive environments. The future PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage means, and provide to market agents the means to ensure a flexible and secure operation. Virtual power players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. This paper proposes an artificial neural network (ANN) based methodology to support VPP resource schedule. The trained network is able to achieve good schedule results requiring modest computational means. A real data test case is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapidly increasing computing power, available storage and communication capabilities of mobile devices makes it possible to start processing and storing data locally, rather than offloading it to remote servers; allowing scenarios of mobile clouds without infrastructure dependency. We can now aim at connecting neighboring mobile devices, creating a local mobile cloud that provides storage and computing services on local generated data. In this paper, we describe an early overview of a distributed mobile system that allows accessing and processing of data distributed across mobile devices without an external communication infrastructure. Copyright © 2015 ICST.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various differential cross-sections are measured in top-quark pair (tt¯) events produced in proton--proton collisions at a centre-of-mass energy of s√=7 TeV at the LHC with the ATLAS detector. These differential cross-sections are presented in a data set corresponding to an integrated luminosity of 4.6 fb−1. The differential cross-sections are presented in terms of kinematic variables of a top-quark proxy referred to as the pseudo-top-quark whose dependence on theoretical models is minimal. The pseudo-top-quark can be defined in terms of either reconstructed detector objects or stable particles in an analogous way. The measurements are performed on tt¯ events in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of them tagged as originating from a b-quark. The hadronic and leptonic pseudo-top-quarks are defined via the leptonic or hadronic decay mode of the W boson produced by the top-quark decay in events with a single charged lepton.The cross-section is measured as a function of the transverse momentum and rapidity of both the hadronic and leptonic pseudo-top-quark as well as the transverse momentum, rapidity and invariant mass of the pseudo-top-quark pair system. The measurements are corrected for detector effects and are presented within a kinematic range that closely matches the detector acceptance. Differential cross-section measurements of the pseudo-top-quark variables are compared with several Monte Carlo models that implement next-to-leading order or leading-order multi-leg matrix-element calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A search for new charged massive gauge bosons, called W′, is performed with the ATLAS detector at the LHC, in proton--proton collisions at a centre-of-mass energy of s√ = 8 TeV, using a dataset corresponding to an integrated luminosity of 20.3 fb−1. This analysis searches for W′ bosons in the W′→tb¯ decay channel in final states with electrons or muons, using a multivariate method based on boosted decision trees. The search covers masses between 0.5 and 3.0 TeV, for right-handed or left-handed W′ bosons. No significant deviation from the Standard Model expectation is observed and limits are set on the W′→tb¯ cross-section times branching ratio and on the W′-boson effective couplings as a function of the W′-boson mass using the CLs procedure. For a left-handed (right-handed) W′ boson, masses below 1.70 (1.92) TeV are excluded at 95% confidence level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A search for the Standard Model Higgs boson produced in association with a pair of top quarks, tt¯H, is presented. The analysis uses 20.3 fb−1 of pp collision data at s√ = 8 TeV, collected with the ATLAS detector at the Large Hadron Collider during 2012. The search is designed for the H to bb¯ decay mode and uses events containing one or two electrons or muons. In order to improve the sensitivity of the search, events are categorised according to their jet and b-tagged jet multiplicities. A neural network is used to discriminate between signal and background events, the latter being dominated by tt¯+jets production. In the single-lepton channel, variables calculated using a matrix element method are included as inputs to the neural network to improve discrimination of the irreducible tt¯+bb¯ background. No significant excess of events above the background expectation is found and an observed (expected) limit of 3.4 (2.2) times the Standard Model cross section is obtained at 95% confidence level. The ratio of the measured tt¯H signal cross section to the Standard Model expectation is found to be μ=1.5±1.1 assuming a Higgs boson mass of 125 GeV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A measurement of the top--antitop (tt¯) charge asymmetry is presented using data corresponding to an integrated luminosity of 4.6 fb−1 of LHC pp collisions at a centre-of-mass energy of 7 TeV collected by the ATLAS detector. Events with two charged leptons, at least two jets and large missing transverse momentum are selected. Two observables are studied: AℓℓC based on the identified charged leptons, and Att¯C, based on the reconstructed tt¯ final state. The asymmetries are measured to be AℓℓC=0.024±0.015 (stat.)±0.009 (syst.), Att¯C=0.021±0.025 (stat.)±0.017 (syst.). The measured values are in agreement with the Standard Model predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mass of the top quark is measured in a data set corresponding to 4.6 fb−1 of proton--proton collisions with centre-of-mass energy s√=7 TeV collected by the ATLAS detector at the LHC. Events consistent with hadronic decays of top--antitop quark pairs with at least six jets in the final state are selected. The substantial background from multijet production is modelled with data-driven methods that utilise the number of identified b-quark jets and the transverse momentum of the sixth leading jet, which have minimal correlation. The top-quark mass is obtained from template fits to the ratio of three-jet to dijet mass. The three-jet mass is calculated from the three jets of a top-quark decay. Using these three jets the dijet mass is obtained from the two jets of the W boson decay. The top-quark mass obtained from this fit is thus less sensitive to the uncertainty in the energy measurement of the jets. A binned likelihood fit yields a top-quark mass of mt = 175.1 ± 1.4 (stat.) ± 1.2 (syst.) GeV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the huge increase in processor and interprocessor network performace, many computational problems remain unsolved due to lack of some critical resources such as floating point sustained performance, memory bandwidth, etc... Examples of these problems are found in areas of climate research, biology, astrophysics, high energy physics (montecarlo simulations) and artificial intelligence, among others. For some of these problems, computing resources of a single supercomputing facility can be 1 or 2 orders of magnitude apart from the resources needed to solve some them. Supercomputer centers have to face an increasing demand on processing performance, with the direct consequence of an increasing number of processors and systems, resulting in a more difficult administration of HPC resources and the need for more physical space, higher electrical power consumption and improved air conditioning, among other problems. Some of the previous problems can´t be easily solved, so grid computing, intended as a technology enabling the addition and consolidation of computing power, can help in solving large scale supercomputing problems. In this document, we describe how 2 supercomputing facilities in Spain joined their resources to solve a problem of this kind. The objectives of this experience were, among others, to demonstrate that such a cooperation can enable the solution of bigger dimension problems and to measure the efficiency that could be achieved. In this document we show some preliminary results of this experience and to what extend these objectives were achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Computational Biophysics Group at the Universitat Pompeu Fabra (GRIB-UPF) hosts two unique computational resources dedicated to the execution of large scale molecular dynamics (MD) simulations: (a) the ACMD molecular-dynamics software, used on standard personal computers with graphical processing units (GPUs); and (b) the GPUGRID. net computing network, supported by users distributed worldwide that volunteer GPUs for biomedical research. We leveraged these resources and developed studies, protocols and open-source software to elucidate energetics and pathways of a number of biomolecular systems, with a special focus on flexible proteins with many degrees of freedom. First, we characterized ion permeation through the bactericidal model protein Gramicidin A conducting one of the largest studies to date with the steered MD biasing methodology. Next, we addressed an open problem in structural biology, the determination of drug-protein association kinetics; we reconstructed the binding free energy, association, and dissaciociation rates of a drug like model system through a spatial decomposition and a Makov-chain analysis. The work was published in the Proceedings of the National Academy of Sciences and become one of the few landmark papers elucidating a ligand-binding pathway. Furthermore, we investigated the unstructured Kinase Inducible Domain (KID), a 28-peptide central to signalling and transcriptional response; the kinetics of this challenging system was modelled with a Markovian approach in collaboration with Frank Noe’s group at the Freie University of Berlin. The impact of the funding includes three peer-reviewed publication on high-impact journals; three more papers under review; four MD analysis components, released as open-source software; MD protocols; didactic material, and code for the hosting group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Utilisant les plus récentes données recueillies par le détecteur ATLAS lors de collisions pp à 7 et 8 TeV au LHC, cette thèse établira des contraintes sévères sur une multitude de modèles allant au-delà du modèle standard (MS) de la physique des particules. Plus particulièrement, deux types de particules hypothétiques, existant dans divers modèles théoriques et qui ne sont pas présentes dans le MS, seront étudiés et sondés. Le premier type étudié sera les quarks-vectoriels (QV) produits lors de collisions pp par l’entremise de couplages électrofaibles avec les quarks légers u et d. On recherchera ces QV lorsqu’ils se désintègrent en un boson W ou Z, et un quark léger. Des arguments théoriques établissent que sous certaines conditions raisonnables la production simple dominerait la production en paires des QV. La topologie particulière des évènements en production simple des QV permettra alors la mise en oeuvre de techniques d’optimisation efficaces pour leur extraction des bruits de fond électrofaibles. Le deuxième type de particules recherché sera celles qui se désintègrent en WZ lorsque ces bosons de jauges W, et Z se désintègrent leptoniquement. Les états finaux détectés par ATLAS seront par conséquent des évènements ayant trois leptons et de l’énergie transverse manquante. La distribution de la masse invariante de ces objets sera alors examinée pour déterminer la présence ou non de nouvelles résonances qui se manifesterait par un excès localisé. Malgré le fait qu’à première vue ces deux nouveaux types de particules n’ont que très peu en commun, ils ont en réalité tous deux un lien étroit avec la brisure de symétrie électrofaible. Dans plusieurs modèles théoriques, l’existence hypothétique des QV est proposé pour annuler les contributions du quark top aux corrections radiatives de la masse du Higgs du MS. Parallèlement, d’autres modèles prédisent quant à eux des résonances en WZ tout en suggérant que le Higgs est une particule composite, chambardant ainsi tout le sector Higgs du MS. Ainsi, les deux analyses présentées dans cette thèse ont un lien fondamental avec la nature même du Higgs, élargissant par le fait même nos connaissances sur l’origine de la masse intrinsèque des particules. En fin de compte, les deux analyses n’ont pas observé d’excès significatif dans leurs régions de signal respectives, ce qui permet d’établir des limites sur la section efficace de production en fonction de la masse des résonances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compute grids are used widely in many areas of environmental science, but there has been limited uptake of grid computing by the climate modelling community, partly because the characteristics of many climate models make them difficult to use with popular grid middleware systems. In particular, climate models usually produce large volumes of output data, and running them usually involves complicated workflows implemented as shell scripts. For example, NEMO (Smith et al. 2008) is a state-of-the-art ocean model that is used currently for operational ocean forecasting in France, and will soon be used in the UK for both ocean forecasting and climate modelling. On a typical modern cluster, a particular one year global ocean simulation at 1-degree resolution takes about three hours when running on 40 processors, and produces roughly 20 GB of output as 50000 separate files. 50-year simulations are common, during which the model is resubmitted as a new job after each year. Running NEMO relies on a set of complicated shell scripts and command utilities for data pre-processing and post-processing prior to job resubmission. Grid Remote Execution (G-Rex) is a pure Java grid middleware system that allows scientific applications to be deployed as Web services on remote computer systems, and then launched and controlled as if they are running on the user's own computer. Although G-Rex is general purpose middleware it has two key features that make it particularly suitable for remote execution of climate models: (1) Output from the model is transferred back to the user while the run is in progress to prevent it from accumulating on the remote system and to allow the user to monitor the model; (2) The client component is a command-line program that can easily be incorporated into existing model work-flow scripts. G-Rex has a REST (Fielding, 2000) architectural style, which allows client programs to be very simple and lightweight and allows users to interact with model runs using only a basic HTTP client (such as a Web browser or the curl utility) if they wish. This design also allows for new client interfaces to be developed in other programming languages with relatively little effort. The G-Rex server is a standard Web application that runs inside a servlet container such as Apache Tomcat and is therefore easy to install and maintain by system administrators. G-Rex is employed as the middleware for the NERC1 Cluster Grid, a small grid of HPC2 clusters belonging to collaborating NERC research institutes. Currently the NEMO (Smith et al. 2008) and POLCOMS (Holt et al, 2008) ocean models are installed, and there are plans to install the Hadley Centre’s HadCM3 model for use in the decadal climate prediction project GCEP (Haines et al., 2008). The science projects involving NEMO on the Grid have a particular focus on data assimilation (Smith et al. 2008), a technique that involves constraining model simulations with observations. The POLCOMS model will play an important part in the GCOMS project (Holt et al, 2008), which aims to simulate the world’s coastal oceans. A typical use of G-Rex by a scientist to run a climate model on the NERC Cluster Grid proceeds as follows :(1) The scientist prepares input files on his or her local machine. (2) Using information provided by the Grid’s Ganglia3 monitoring system, the scientist selects an appropriate compute resource. (3) The scientist runs the relevant workflow script on his or her local machine. This is unmodified except that calls to run the model (e.g. with “mpirun”) are simply replaced with calls to "GRexRun" (4) The G-Rex middleware automatically handles the uploading of input files to the remote resource, and the downloading of output files back to the user, including their deletion from the remote system, during the run. (5) The scientist monitors the output files, using familiar analysis and visualization tools on his or her own local machine. G-Rex is well suited to climate modelling because it addresses many of the middleware usability issues that have led to limited uptake of grid computing by climate scientists. It is a lightweight, low-impact and easy-to-install solution that is currently designed for use in relatively small grids such as the NERC Cluster Grid. A current topic of research is the use of G-Rex as an easy-to-use front-end to larger-scale Grid resources such as the UK National Grid service.