889 resultados para LATEX-PARTICLES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As part of a large study investigating indoor air in residential houses in Brisbane, Australia, the purpose of this work was to quantify indoor exposure to submicrometer particles and PM2.5 for the inhabitants of 14 houses. Particle concentrations were measured simultaneously for more than 48 hours in the kitchens of all the houses by using a condensation particle counter (CPC) and a photometer (DustTrak). The occupants of the houses were asked to fill in a diary, noting the time and duration of any activity occurring throughout the house during measurement, as well as their presence or absence from home. From the time series concentration data and the information about indoor activities, exposure to the inhabitants of the houses was calculated for the entire time they spent at home as well as during indoor activities resulting in particle generation. The results show that the highest median concentration level occurred during cooking periods for both particle number concentration (47.5´103 particles cm-3) and PM2.5 concentration (13.4 mg m-3). The highest residential exposure period was the sleeping period for both particle number exposure (31%) and PM2.5 exposure (45.6%). The percentage of the average residential particle exposure level in total 24h particle exposure level was approximating 70% for both particle number and PM2.5 exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between indoor and outdoor concentration levels of particles in the absence and in the presence of indoor sources has been attracting an increasing level of attention. Understanding of the relationship and the mechanisms driving it, as well as the ability to quantify it, are of importance for assessment of source contribution, assessment of human exposure and for control and management of particles. It became particularly important to address this topic when evidence came from epidemiological studies on the close association between outdoor concentration levels of particles and health effects, yet with many studies showing that indoor concentrations could be significantly higher than those outdoors. This paper presents a summary of an extensive literature review on this topic conducted with an aim to identify general trends in relation to the I/O relationship emerging from studies conducted worldwide. The review considered separately a larger body of papers published on PM10, PM2.5, as well as the smaller database on particle number and number or volume size distribution. A specific focus of this paper is on naturally ventilated houses. The conclusion from the review is that despite the multiplicity of factors that play role in affecting the relationship, there are clear trends emerging in relation to the I/O relationship for particle mass concentration, enabling more general predictions to be made about the relationship. However, more research is still needed on particle number concentration and size distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to determine the collection efficiency of ultrafine particles into an impinger fitted with a fritted nozzle tip as a means to increase contact surface area between the aerosol and the liquid. The influence of liquid sampling volume, frit porosity and the nature of the sampling liquid was explored and it was shown that all impact on the collection efficiency of particles smaller than 220 nm. Obtained values for overall collection efficiency were substantially higher (~30–95%) than have been previously reported, mainly due to the high deposition of particles in the fritted nozzle tip, especially in case of finer porosity frits and smaller particles. Values for the capture efficiency of the solvent alone ranged from 20 to 45%, depending on the type and the volume of solvent. Additionally, our results show that airstream dispersion into bubbles improves particle trapping by the liquid and that there is a difference in collection efficiencies based on the nature and volume of the solvent used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional ceramic separation membranes, which are fabricated by applying colloidal suspensions of metal hydroxides to porous supports, tend to suffer from pinholes and cracks that seriously affect their quality. Other intrinsic problems for these membranes include dramatic losses of flux when the pore sizes are reduced to enhance selectivity and dead-end pores that make no contribution to filtration. In this work, we propose a new strategy for addressing these problems by constructing a hierarchically structured separation layer on a porous substrate using large titanate nanofibers and smaller boehmite nanofibers. The nanofibers are able to divide large voids into smaller ones without forming dead-end pores and with the minimum reduction of the total void volume. The separation layer of nanofibers has a porosity of over 70% of its volume, whereas the separation layer in conventional ceramic membranes has a porosity below 36% and inevitably includes dead-end pores that make no contribution to the flux. This radical change in membrane texture greatly enhances membrane performance. The resulting membranes were able to filter out 95.3% of 60-nm particles from a 0.01 wt % latex while maintaining a relatively high flux of between 800 and 1000 L/m2·h, under a low driving pressure (20 kPa). Such flow rates are orders of magnitude greater than those of conventional membranes with equal selectivity. Moreover, the flux was stable at approximately 800 L/m2·h with a selectivity of more than 95%, even after six repeated runs of filtration and calcination. Use of different supports, either porous glass or porous alumina, had no substantial effect on the performance of the membranes; thus, it is possible to construct the membranes from a variety of supports without compromising functionality. The Darcy equation satisfactorily describes the correlation between the filtration flux and the structural parameters of the new membranes. The assembly of nanofiber meshes to combine high flux with excellent selectivity is an exciting new direction in membrane fabrication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to investigate ultrafine particles (< 0.1 μm) in primary school classrooms, in relation to the classrooms activities. The investigations were conducted in three classrooms during two measuring campaigns, which together encompassed a period of 60 days. Initial investigations showed that under the normal operating conditions of the school there were many occasions in all three classrooms where indoor particle concentrations increased significantly compared to outdoor levels. By far the highest increases in the classroom resulted from art activities (painting, gluing and drawing), at times reaching over 1.4 x 105 particle cm-3. The indoor particle concentrations exceeded outdoor concentrations by approximately one order of magnitude, with a count median diameter ranging from 20-50 nm. Significant increases also occurred during cleaning activities, when detergents were used. GC-MS analysis conducted on 4 samples randomly selected from about 30 different paints and glues, as well as the detergent used in the school, showed that d-limonene was one of the main organic compounds of the detergent, however, it was not detected in the samples of the paints and the glue. Controlled experiments showed that this monoterpene, emitted from the detergent, reacted with O3 (at outdoor ambient concentrations ranging from 0.06-0.08ppm) and formed secondary organic aerosols. Further investigations to identify other liquids which may be potential sources of the precursors of secondary organic aerosols, were outside the scope of this project, however, it is expected that the problem identified by this study could be more widely spread, since most primary schools use liquid materials for art classes, and all schools use detergents for cleaning. Further studies are therefore recommended to better understand this phenomenon and also to minimize school children exposure to ultrafine particles from these indoor sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research on particle size distributions and particle concentrations near a busy road cannot be explained by the conventional mechanisms for particle evolution of combustion aerosols. Specifically they appear to be inadequate to explain the experimental observations of particle transformation and the evolution of the total number concentration. This resulted in the development of a new mechanism based on their thermal fragmentation, for the evolution of combustion aerosol nano-particles. A complex and comprehensive pattern of evolution of combustion aerosols, involving particle fragmentation, was then proposed and justified. In that model it was suggested that thermal fragmentation occurs in aggregates of primary particles each of which contains a solid graphite/carbon core surrounded by volatile molecules bonded to the core by strong covalent bonds. Due to the presence of strong covalent bonds between the core and the volatile (frill) molecules, such primary composite particles can be regarded as solid, despite the presence of significant (possibly, dominant) volatile component. Fragmentation occurs when weak van der Waals forces between such primary particles are overcome by their thermal (Brownian) motion. In this work, the accepted concept of thermal fragmentation is advanced to determine whether fragmentation is likely in liquid composite nano-particles. It has been demonstrated that at least at some stages of evolution, combustion aerosols contain a large number of composite liquid particles containing presumably several components such as water, oil, volatile compounds, and minerals. It is possible that such composite liquid particles may also experience thermal fragmentation and thus contribute to, for example, the evolution of the total number concentration as a function of distance from the source. Therefore, the aim of this project is to examine theoretically the possibility of thermal fragmentation of composite liquid nano-particles consisting of immiscible liquid v components. The specific focus is on ternary systems which include two immiscible liquid droplets surrounded by another medium (e.g., air). The analysis shows that three different structures are possible, the complete encapsulation of one liquid by the other, partial encapsulation of the two liquids in a composite particle, and the two droplets separated from each other. The probability of thermal fragmentation of two coagulated liquid droplets is discussed and examined for different volumes of the immiscible fluids in a composite liquid particle and their surface and interfacial tensions through the determination of the Gibbs free energy difference between the coagulated and fragmented states, and comparison of this energy difference with the typical thermal energy kT. The analysis reveals that fragmentation was found to be much more likely for a partially encapsulated particle than a completely encapsulated particle. In particular, it was found that thermal fragmentation was much more likely when the volume ratio of the two liquid droplets that constitute the composite particle are very different. Conversely, when the two liquid droplets are of similar volumes, the probability of thermal fragmentation is small. It is also demonstrated that the Gibbs free energy difference between the coagulated and fragmented states is not the only important factor determining the probability of thermal fragmentation of composite liquid particles. The second essential factor is the actual structure of the composite particle. It is shown that the probability of thermal fragmentation is also strongly dependent on the distance that each of the liquid droplets should travel to reach the fragmented state. In particular, if this distance is larger than the mean free path for the considered droplets in the air, the probability of thermal fragmentation should be negligible. In particular, it follows form here that fragmentation of the composite particle in the state with complete encapsulation is highly unlikely because of the larger distance that the two droplets must travel in order to separate. The analysis of composite liquid particles with the interfacial parameters that are expected in combustion aerosols demonstrates that thermal fragmentation of these vi particles may occur, and this mechanism may play a role in the evolution of combustion aerosols. Conditions for thermal fragmentation to play a significant role (for aerosol particles other than those from motor vehicle exhaust) are determined and examined theoretically. Conditions for spontaneous transformation between the states of composite particles with complete and partial encapsulation are also examined, demonstrating the possibility of such transformation in combustion aerosols. Indeed it was shown that for some typical components found in aerosols that transformation could take place on time scales less than 20 s. The analysis showed that factors that influenced surface and interfacial tension played an important role in this transformation process. It is suggested that such transformation may, for example, result in a delayed evaporation of composite particles with significant water component, leading to observable effects in evolution of combustion aerosols (including possible local humidity maximums near a source, such as a busy road). The obtained results will be important for further development and understanding of aerosol physics and technologies, including combustion aerosols and their evolution near a source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of biogenic particle formation on climate is a well recognised phenomenon. To understand the mechanisms underlying the biogenic particle formation, determining the chemical composition of the new particles and therefore the species that drive the particle production is of utmost importance. Due to the very small amount of mass involved, indirect approaches are frequently used to infer the composition. We present here the results of such an indirect approach by simultaneously measuring volatile and hygroscopic properties of newly formed particles in a forest environment. It is shown that the particles are composed of both sulphates and organics, with the amount of sulphate component strongly depending on the available gas-phase sulphuric acid, and the organic components having the same volatility and hygroscopicity as photooxidation products of a monoterpene such as α-pinene. Our findings agree with a two-step process through nucleation and cluster formation followed by simultaneous growth by condensation of sulphates and organics that take the particles to climatically relevant sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 4 week intensive measurement campaign was conducted in March–April 2007 at Agnes Water, a remote coastal site on the east coast of Australia. A Volatility-Hygroscopicity-Tandem Differential Mobility Analyser (VH-TDMA) was used to investigate changes in the hygroscopic properties of ambient particles as volatile components were progressively evaporated. Nine out of 18 VH-TDMA volatility scans detected internally mixed multi-component particles in the nucleation and Aitken modes in clean marine air. Evaporation of a volatile, organic-like component in the VH-TDMA caused significant increases in particle hygroscopicity. In 3 scans the increase in hygroscopicity was so large it was explained by an increase in the absolute volume of water uptake by the particle residuals, and not merely an increase in their relative hygroscopicity. This indicates the presence of organic components that were suppressing the hygroscopic growth of mixed particles on the timescale of humidification in the VH-TDMA (6.5 secs). This observation was supported by ZSR calculations for one scan, which showed that the measured growth factors of mixed particles were up to 18% below those predicted assuming independent water uptake of the individual particle components. The observed suppression of water uptake could be due to a reduced rate of hygroscopic growth caused by the presence of organic films or organic-inorganic interactions in solution droplets that had a negative effect on hygroscopicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airborne measurements of particle number concentrations from biomass burning were conducted in the Northern Territory, Australia, during June and September campaigns in 2003, which is the early and the late dry season in that region. The airborne measurements were performed along horizontal flight tracks, at several heights in order to gain insight into the particle concentration levels and their variation with height within the lower boundary layer (LBL), upper boundary layer (UBL), and also in the free troposphere (FT). The measurements found that the concentration of particles during the early dry season was lower than that for the late dry season. For the June campaign, the concentration of particles in LBL, UBL, and FT were (685 ± 245) particles/cm3, (365 ± 183) particles/cm3, and (495 ± 45) particle/cm3 respectively. For the September campaign, the concentration of particles were found to be (1233 ± 274) particles/cm3 in the LBL, (651 ± 68) particles/cm3 in the UBL, and (568 ± 70) particles/cm3 in the FT. The particle size distribution measurements indicate that during the late dry season there was no change in the particle size distribution below (LBL) and above the boundary layer (UBL). This indicates that there was possibly some penetration of biomass burning particles into the upper boundary layer. In the free troposphere the particle concentration and size measured during both campaigns were approximately the same.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concentrations of ultrafine (<0.1µm) particles (UFPs) and PM2.5 (<2.5µm) were measured whilst commuting along a similar route by train, bus, ferry and automobile in Sydney, Australia. One trip on each transport mode was undertaken during both morning and evening peak hours throughout a working week, for a total of 40 trips. Analyses comprised one-way ANOVA to compare overall (i.e. all trips combined) geometric mean concentrations of both particle fractions measured across transport modes, and assessment of both the correlation between wind speed and individual trip means of UFPs and PM2.5, and the correlation between the two particle fractions. Overall geometric mean concentrations of UFPs and PM2.5 ranged from 2.8 (train) to 8.4 (bus) × 104 particles cm-3 and 22.6 (automobile) to 29.6 (bus) µg m-3, respectively, and a statistically significant difference (p <0.001) between modes was found for both particle fractions. Individual trip geometric mean concentrations were between 9.7 × 103 (train) and 2.2 × 105 (bus) particles cm-3 and 9.5 (train) to 78.7 (train) µg m-3. Estimated commuter exposures were variable, and the highest return trip mean PM2.5 exposure occurred in the ferry mode, whilst the highest UFP exposure occurred during bus trips. The correlation between fractions was generally poor, and in keeping with the duality of particle mass and number emissions in vehicle-dominated urban areas. Wind speed was negatively correlated with, and a generally poor determinant of, UFP and PM2.5 concentrations, suggesting a more significant role for other factors in determining commuter exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the potential toxicological impact of particles produced during biomass combustion by an automatic pellet boiler and a traditional logwood stove under various combustion conditions using a novel profluorescent nitroxide probe BPEAnit. This probe is weakly fluorescent, but yields strong fluorescence emission upon radical trapping or redox activity. Samples were collected by bubbling aerosol through an impinger containing BPEAnit solution, followed by fluorescence measurement. The fluorescence of BPEAnit was measured for particles produced during various combustion phases, at the beginning of burning (cold start), stable combustion after refilling with the fuel (warm start) and poor burning conditions. For particles produced by the logwood stove under cold-start conditions significantly higher amounts of reactive species per unit of particulate mass were observed compared to emissions produced during a warm start. In addition, sampling of logwood burning emissions after passing through a thermodenuder at 250oC resulted in an 80-100% reduction of the fluorescence signal of BPEAnit probe, indicating that the majority of reactive species were semivolatile. Moreover, the amount of reactive species showed a strong correlation with the amount of particulate organic material. This indicates the importance of semivolatile organics in particle-related toxicity. Particle emissions from the pellet boiler, although of similar mass concentration, were not observed to lead to an increase in fluorescence signal during any of the combustion phases.