949 resultados para LASER-PLASMA INTERACTIONS
Resumo:
A non-adiabatic quantum molecular dynamics approach for treating the interaction of matter with intense, short-duration laser pulses is developed. This approach, which is parallelized to run on massively-parallel supercomputers, is shown to be both accurate and efficient. Illustrative results are presented for harmonic generation occurring in diatomic molecules using linearly polarized laser pulses.
Resumo:
A novel physical phenomenon has been observed following the interaction of an intense (10(19) W/cm(2)) laser pulse with an underdense plasma. Long-lived, macroscopic bubblelike structures have been detected through the deflection that the associated electric charge separation causes in a proton probe beam. These structures are interpreted as the remnants of a cloud of relativistic solitons generated in the plasma by the ultraintense laser pulse. This interpretation is supported by an analytical study of the soliton cloud evolution, by particle-in-cell simulations, and by a reconstruction of the proton-beam deflection.
Resumo:
A study of the properties of multi-MeV proton emission from thin foils following ultraintense laser irradiation has been carried out. It has been shown that the protons are emitted, in a quasilaminar fashion, from a region of transverse size of the order of 100-200 mum. The imaging properties of the proton source are equivalent to those of a much smaller source located several hundred mum in front of the foil. This finding has been obtained by analyzing proton radiographs of periodically structured test objects, and is corroborated by observations of proton emission from laser-heated thick targets.
Resumo:
The authors present experimental results showing how the use of a high contrast femtosecond laser system allows better optimization of K emission from a Cu target. The shorter scale-length preformed plasma is better optimized for resonance absorption of the laser light when the laser is moved away from best focus. The experimental data show a central peak of K emission at tight focus with strong secondary peaks at large offset. The use of these secondary peaks results in a much reduced hard x-ray background and should lead to shorter K pulses than at tight focus.
Resumo:
The propagation in a rarefied plasma (n(e)less than or similar to 10(15) cm(-3)) of collisionless shock waves and ion-acoustic solitons, excited following the interaction of a long (tau(L)similar to 470 ps) and intense (I similar to 10(15) W cm(-2)) laser pulse with solid targets, has been investigated via proton probing techniques. The shocks' structures and related electric field distributions were reconstructed with high spatial and temporal resolution. The experimental results were interpreted within the framework of the nonlinear wave description based on the Korteweg-de Vries-Burgers equation.
Resumo:
It has been shown that a femtosecond plasma of cluster targets is an almost isotropic source of fast ions and, hence, can be used to obtain ionographic images with a wide field of view. The spatial resolution of the resulting ionographic images is no worse than 600 nm, which corresponds to a uniquely high value of about 105 of the ratio of the field of view to the resolution. The use of 100–300-keV ion fluxes ensures the sensitivity of the method to the sample thickness of no worse than 100 nm even for samples consisting of light chemical elements (C, H). The proposed method can be used to obtain images of low-contrast biological objects, thin films, membranes, and other nanostructured objects.
Resumo:
We have analyzed the coupling of ultraintense lasers (at similar to 2 X 1019 W/cm(2)) with solid foils of limited transverse extent (similar to 10 s of mu m) by monitoring the electrons and ions emitted from the target. We observe that reducing the target surface area allows electrons at the target surface to be reflected from the target edges during or shortly after the laser pulse. This transverse refluxing can maintain a hotter, denser and more homogeneous electron sheath around the target for a longer time. Consequently, when transverse refluxing takes places within the acceleration time of associated ions, we observe increased maximum proton energies (up to threefold), increased laser-to-ion conversion efficiency (up to a factor 30), and reduced divergence which bodes well for a number of applications.