171 resultados para LAPLACIAN
Resumo:
Generalized fractional partial differential equations have now found wide application for describing important physical phenomena, such as subdiffusive and superdiffusive processes. However, studies of generalized multi-term time and space fractional partial differential equations are still under development. In this paper, the multi-term time-space Caputo-Riesz fractional advection diffusion equations (MT-TSCR-FADE) with Dirichlet nonhomogeneous boundary conditions are considered. The multi-term time-fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0, 1], [1, 2] and [0, 2], respectively. These are called respectively the multi-term time-fractional diffusion terms, the multi-term time-fractional wave terms and the multi-term time-fractional mixed diffusion-wave terms. The space fractional derivatives are defined as Riesz fractional derivatives. Analytical solutions of three types of the MT-TSCR-FADE are derived with Dirichlet boundary conditions. By using Luchko's Theorem (Acta Math. Vietnam., 1999), we proposed some new techniques, such as a spectral representation of the fractional Laplacian operator and the equivalent relationship between fractional Laplacian operator and Riesz fractional derivative, that enabled the derivation of the analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations. © 2012.
Resumo:
We consider a two-dimensional space-fractional reaction diffusion equation with a fractional Laplacian operator and homogeneous Neumann boundary conditions. The finite volume method is used with the matrix transfer technique of Ilić et al. (2006) to discretise in space, yielding a system of equations that requires the action of a matrix function to solve at each timestep. Rather than form this matrix function explicitly, we use Krylov subspace techniques to approximate the action of this matrix function. Specifically, we apply the Lanczos method, after a suitable transformation of the problem to recover symmetry. To improve the convergence of this method, we utilise a preconditioner that deflates the smallest eigenvalues from the spectrum. We demonstrate the efficiency of our approach for a fractional Fisher’s equation on the unit disk.
Resumo:
Neutron Compton scattering (NCS) measurements of the anisotropy of the momentum distribution and the mean Laplacian of the interatomic potential ∇2V have been performed using electron volt neutrons, with wave vector transfers between 24 Å−1 and 98 Å−1. The measured momentum distribution of the atoms displays significantly more anisotropy than a calculation using a model density of states. We have observed anisotropies in ∇2V for the first time. The results suggest that the atomic potential is harmonic within the graphite planes, but anharmonic for vibrations perpendicular to the planes.
Resumo:
With the aim of developing the application of neutron Compton scattering (NCS) to molecular systems of biophysical interest, we are using the Compton spectrometer EVS at ISIS to characterize the momentum distribution of protons in peptide groups. In this contribution we present NCS measurements of the recoil peak (Compton profile) due to the amide proton in otherwise fully deuterated acetanilide (ACN), a widely studied model system for H-bonding and energy transfer in biomolecules. We obtain values for the average width of the potential well of the amide proton and its mean kinetic energy. Deviations from the Gaussian form of the Compton profile, analyzed on the basis of an expansion due to Sears, provide data relating to the Laplacian of the proton potential. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Fractional differential equations have been increasingly used as a powerful tool to model the non-locality and spatial heterogeneity inherent in many real-world problems. However, a constant challenge faced by researchers in this area is the high computational expense of obtaining numerical solutions of these fractional models, owing to the non-local nature of fractional derivatives. In this paper, we introduce a finite volume scheme with preconditioned Lanczos method as an attractive and high-efficiency approach for solving two-dimensional space-fractional reaction–diffusion equations. The computational heart of this approach is the efficient computation of a matrix-function-vector product f(A)bf(A)b, where A A is the matrix representation of the Laplacian obtained from the finite volume method and is non-symmetric. A key aspect of our proposed approach is that the popular Lanczos method for symmetric matrices is applied to this non-symmetric problem, after a suitable transformation. Furthermore, the convergence of the Lanczos method is greatly improved by incorporating a preconditioner. Our approach is show-cased by solving the fractional Fisher equation including a validation of the solution and an analysis of the behaviour of the model.
Resumo:
This work addresses fundamental issues in the mathematical modelling of the diffusive motion of particles in biological and physiological settings. New mathematical results are proved and implemented in computer models for the colonisation of the embryonic gut by neural cells and the propagation of electrical waves in the heart, offering new insights into the relationships between structure and function. In particular, the thesis focuses on the use of non-local differential operators of non-integer order to capture the main features of diffusion processes occurring in complex spatial structures characterised by high levels of heterogeneity.
Resumo:
The efficient computation of matrix function vector products has become an important area of research in recent times, driven in particular by two important applications: the numerical solution of fractional partial differential equations and the integration of large systems of ordinary differential equations. In this work we consider a problem that combines these two applications, in the form of a numerical solution algorithm for fractional reaction diffusion equations that after spatial discretisation, is advanced in time using the exponential Euler method. We focus on the efficient implementation of the algorithm on Graphics Processing Units (GPU), as we wish to make use of the increased computational power available with this hardware. We compute the matrix function vector products using the contour integration method in [N. Hale, N. Higham, and L. Trefethen. Computing Aα, log(A), and related matrix functions by contour integrals. SIAM J. Numer. Anal., 46(5):2505–2523, 2008]. Multiple levels of preconditioning are applied to reduce the GPU memory footprint and to further accelerate convergence. We also derive an error bound for the convergence of the contour integral method that allows us to pre-determine the appropriate number of quadrature points. Results are presented that demonstrate the effectiveness of the method for large two-dimensional problems, showing a speedup of more than an order of magnitude compared to a CPU-only implementation.
Resumo:
The numerical solution of fractional partial differential equations poses significant computational challenges in regard to efficiency as a result of the spatial nonlocality of the fractional differential operators. The dense coefficient matrices that arise from spatial discretisation of these operators mean that even one-dimensional problems can be difficult to solve using standard methods on grids comprising thousands of nodes or more. In this work we address this issue of efficiency for one-dimensional, nonlinear space-fractional reaction–diffusion equations with fractional Laplacian operators. We apply variable-order, variable-stepsize backward differentiation formulas in a Jacobian-free Newton–Krylov framework to advance the solution in time. A key advantage of this approach is the elimination of any requirement to form the dense matrix representation of the fractional Laplacian operator. We show how a banded approximation to this matrix, which can be formed and factorised efficiently, can be used as part of an effective preconditioner that accelerates convergence of the Krylov subspace iterative solver. Our approach also captures the full contribution from the nonlinear reaction term in the preconditioner, which is crucial for problems that exhibit stiff reactions. Numerical examples are presented to illustrate the overall effectiveness of the solver.
Resumo:
Fractional differential equations are becoming increasingly used as a powerful modelling approach for understanding the many aspects of nonlocality and spatial heterogeneity. However, the numerical approximation of these models is demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reaction-diffusion equations described by the fractional Laplacian in bounded rectangular domains ofRn. The main advantages of the proposed schemes is that they yield a fully diagonal representation of the fractional operator, with increased accuracy and efficiency when compared to low-order counterparts, and a completely straightforward extension to two and three spatial dimensions. Our approach is illustrated by solving several problems of practical interest, including the fractional Allen–Cahn, FitzHugh–Nagumo and Gray–Scott models, together with an analysis of the properties of these systems in terms of the fractional power of the underlying Laplacian operator.
Resumo:
We consider a modification of the three-dimensional Navier-Stokes equations and other hydrodynamical evolution equations with space-periodic initial conditions in which the usual Laplacian of the dissipation operator is replaced by an operator whose Fourier symbol grows exponentially as e(vertical bar k vertical bar/kd) at high wavenumbers vertical bar k vertical bar. Using estimates in suitable classes of analytic functions, we show that the solutions with initially finite energy become immediately entire in the space variables and that the Fourier coefficients decay faster than e-(C(k/kd) ln(vertical bar k vertical bar/kd)) for any C < 1/(2 ln 2). The same result holds for the one-dimensional Burgers equation with exponential dissipation but can be improved: heuristic arguments and very precise simulations, analyzed by the method of asymptotic extrapolation of van der Hoeven, indicate that the leading-order asymptotics is precisely of the above form with C = C-* = 1/ ln 2. The same behavior with a universal constant C-* is conjectured for the Navier-Stokes equations with exponential dissipation in any space dimension. This universality prevents the strong growth of intermittency in the far dissipation range which is obtained for ordinary Navier-Stokes turbulence. Possible applications to improved spectral simulations are briefly discussed.
Resumo:
In these lectures we plan to present a survey of certain aspects of harmonic analysis on a Heisenberg nilmanifold Gammakslash}H-n. Using Weil-Brezin-Zak transform we obtain an explicit decomposition of L-2 (Gammakslash}H-n) into irreducible subspaces invariant under the right regular representation of the Heisenberg group. We then study the Segal-Bargmann transform associated to the Laplacian on a nilmanifold and characterise the image of L-2 (GammakslashH-n) in terms of twisted Bergman and Hermite Bergman spaces.
Resumo:
We study the Segal-Bargmann transform on a motion group R-n v K, where K is a compact subgroup of SO(n) A characterization of the Poisson integrals associated to the Laplacian on R-n x K is given We also establish a Paley-Wiener type theorem using complexified representations
Resumo:
This paper may be considered as a sequel to one of our earlier works pertaining to the development of an upwind algorithm for meshless solvers. While the earlier work dealt with the development of an inviscid solution procedure, the present work focuses on its extension to viscous flows. A robust viscous discretization strategy is chosen based on positivity of a discrete Laplacian. This work projects meshless solver as a viable cartesian grid methodology. The point distribution required for the meshless solver is obtained from a hybrid cartesian gridding strategy. Particularly considering the importance of an hybrid cartesian mesh for RANS computations, the difficulties encountered in a conventional least squares based discretization strategy are highlighted. In this context, importance of discretization strategies which exploit the local structure in the grid is presented, along with a suitable point sorting strategy. Of particular interest is the proposed discretization strategies (both inviscid and viscous) within the structured grid block; a rotated update for the inviscid part and a Green-Gauss procedure based positive update for the viscous part. Both these procedures conveniently avoid the ill-conditioning associated with a conventional least squares procedure in the critical region of structured grid block. The robustness and accuracy of such a strategy is demonstrated on a number of standard test cases including a case of a multi-element airfoil. The computational efficiency of the proposed meshless solver is also demonstrated. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In a number of applications of computerized tomography, the ultimate goal is to detect and characterize objects within a cross section. Detection of edges of different contrast regions yields the required information. The problem of detecting edges from projection data is addressed. It is shown that the class of linear edge detection operators used on images can be used for detection of edges directly from projection data. This not only reduces the computational burden but also avoids the difficulties of postprocessing a reconstructed image. This is accomplished by a convolution backprojection operation. For example, with the Marr-Hildreth edge detection operator, the filtering function that is to be used on the projection data is the Radon transform of the Laplacian of the 2-D Gaussian function which is combined with the reconstruction filter. Simulation results showing the efficacy of the proposed method and a comparison with edges detected from the reconstructed image are presented
Resumo:
In this paper we prove two Paley-Wiener-type theorems for the Heisenberg group. One is for the group Fourier transform which is the analogue of the classical Paley-Wiener theorem. The other one is for the spectral projections associated to the sub-Laplacian