977 resultados para LA NINA


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various authors have suggested a general predictive value of climatic indices of El Nino/Southem Oscillation events as indicators of outbreaks of arbovirus disease, particularly Ross River virus in Australia. By analyzing over 100 years of historical outbreak data on Ross River virus disease, our data indicate that, although high Southern Oscillation Index and La Nina conditions are potentially important predictors for the Murray Darling River region, this is not the case for the other four ecological zones in Australia. Our study, therefore, cautions against overgeneralization and suggests that, since climate and weather exert different influences and have different biological implications for the multiplicity of vectors involved, it is logical that predictors should be heterogeneous.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Smallholder farmers in Africa practice traditional cropping techniques such as intercropping. Intercropping is thought to offer higher productivity and resource milisation than sole cropping. In this study, risk associated with maize-bean intercropping was evaluated by quantifying long-term yield in both intercropping and sole cropping in a semi-arid region of South Africa (Bloemfontein, Free State) with reference to rainfall variability. The crop simulation model was run with different cultural practices (planting date and plant density) for 52 summer crop growing seasons (1950/1951-2001/2002). Eighty-one scenarios, consisted of three levels of initial soil water, planting date, maize population, and bean population, were simulated. From the simulation outputs, the total land equivalent ratio (LER) was greater than one. The intercrop (equivalent to sole maize) had greater energy value (EV) than sole beans, and the intercrop (equivalent to sole beans) had greater monetary value (MV) than sole maize. From these results, it can be concluded that maize-bean intercropping is advantageous for this semi-arid region. Soil water at planting was the most important factor of all scenario factors, followed by planting date. Irrigation application at planting, November/December planting and high plant density of maize for EV and beans for MV can be one of the most effective cultural practices in the study region. With regard to rainfall variability, seasonal (October-April) rainfall positively affected EV and MV, but not LER. There was more intercrop production in La Nina years than in El Nino years. Thus, better cultural practices may be selected to maximize maize-bean intercrop yields for specific seasons in the semi-arid region based on the global seasonal outlook. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present 8 yr of long-term water quality, climatological, and water management data for 17 locations in Everglades National Park, Florida. Total phosphorus (P) concentration data from freshwater sites (typically ,0.25 mmol L21, or 8 mg L21) indicate the oligotrophic, P-limited nature of this large freshwater–estuarine landscape. Total P concentrations at estuarine sites near the Gulf of Mexico (average ø0.5 m mol L21) demonstrate the marine source for this limiting nutrient. This ‘‘upside down’’ phenomenon, with the limiting nutrient supplied by the ocean and not the land, is a defining characteristic of the Everglade landscape. We present a conceptual model of how the seasonality of precipitation and the management of canal water inputs control the marine P supply, and we hypothesize that seasonal variability in water residence time controls water quality through internal biogeochemical processing. Low freshwater inflows during the dry season increase estuarine residence times, enabling local processes to control nutrient availability and water quality. El Nin˜o–Southern Oscillation (ENSO) events tend to mute the seasonality of rainfall without altering total annual precipitation inputs. The Nin˜o3 ENSO index (which indicates an ENSO event when positive and a La Nin˜a event when negative) was positively correlated with both annual rainfall and the ratio of dry season to wet season precipitation. This ENSO-driven disruption in seasonal rainfall patterns affected salinity patterns and tended to reduce marine inputs of P to Everglades estuaries. ENSO events also decreased dry season residence times, reducing the importance of estuarine nutrient processing. The combination of variable water management activities and interannual differences in precipitation patterns has a strong influence on nutrient and salinity patterns in Everglades estuaries.