997 resultados para Lévy


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We wish to characterize when a Lévy process X t crosses boundaries b(t), in a two-sided sense, for small times t, where b(t) satisfies very mild conditions. An integral test is furnished for computing the value of sup t→0|X t |/b(t) = c. In some cases, we also specify a function b(t) in terms of the Lévy triplet, such that sup t→0 |X t |/b(t) = 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pardo, Patie, and Savov derived, under mild conditions, a Wiener-Hopf type factorization for the exponential functional of proper Lévy processes. In this paper, we extend this factorization by relaxing a finite moment assumption as well as by considering the exponential functional for killed Lévy processes. As a by-product, we derive some interesting fine distributional properties enjoyed by a large class of this random variable, such as the absolute continuity of its distribution and the smoothness, boundedness or complete monotonicity of its density. This type of results is then used to derive similar properties for the law of maxima and first passage time of some stable Lévy processes. Thus, for example, we show that for any stable process with $\rho\in(0,\frac{1}{\alpha}-1]$, where $\rho\in[0,1]$ is the positivity parameter and $\alpha$ is the stable index, then the first passage time has a bounded and non-increasing density on $\mathbb{R}_+$. We also generate many instances of integral or power series representations for the law of the exponential functional of Lévy processes with one or two-sided jumps. The proof of our main results requires different devices from the one developed by Pardo, Patie, Savov. It relies in particular on a generalization of a transform recently introduced by Chazal et al together with some extensions to killed Lévy process of Wiener-Hopf techniques. The factorizations developed here also allow for further applications which we only indicate here also allow for further applications which we only indicate here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove Chung-type laws of the iterated logarithm for general Lévy processes at zero. In particular, we provide tools to translate small deviation estimates directly into laws of the iterated logarithm. This reveals laws of the iterated logarithm for Lévy processes at small times in many concrete examples. In some cases, exotic norming functions are derived.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the pricing problem of derivatives written in terms of a two dimensional time{changed L¶evy processes. Then, we examine an existing relation between prices of put and call options, of both the European and the American type. This relation is called put{call duality. It includes as a particular case, the relation known as put{call symmetry. Necessary and su±cient conditions for put{call symmetry to hold are shown, in terms of the triplet of local charac- teristic of the Time{changed L¶evy process. In this way we extend the results obtained in Fajardo and Mordecki (2004) to the case of time{changed Lévy processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diffusive epidemic process (PED) is a nonequilibrium stochastic model which, exhibits a phase trnasition to an absorbing state. In the model, healthy (A) and sick (B) individuals diffuse on a lattice with diffusion constants DA and DB, respectively. According to a Wilson renormalization calculation, the system presents a first-order phase transition, for the case DA > DB. Several researches performed simulation works for test this is conjecture, but it was not possible to observe this first-order phase transition. The explanation given was that we needed to perform simulation to higher dimensions. In this work had the motivation to investigate the critical behavior of a diffusive epidemic propagation with Lévy interaction(PEDL), in one-dimension. The Lévy distribution has the interaction of diffusion of all sizes taking the one-dimensional system for a higher-dimensional. We try to explain this is controversy that remains unresolved, for the case DA > DB. For this work, we use the Monte Carlo Method with resuscitation. This is method is to add a sick individual in the system when the order parameter (sick density) go to zero. We apply a finite size scalling for estimates the critical point and the exponent critical =, e z, for the case DA > DB

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power-law distributions, i.e. Levy flights have been observed in various economical, biological, and physical systems in high-frequency regime. These distributions can be successfully explained via gradually truncated Levy flight (GTLF). In general, these systems converge to a Gaussian distribution in the low-frequency regime. In the present work, we develop a model for the physical basis for the cut-off length in GTLF and its variation with respect to the time interval between successive observations. We observe that GTLF automatically approach a Gaussian distribution in the low-frequency regime. We applied the present method to analyze time series in some physical and financial systems. The agreement between the experimental results and theoretical curves is excellent. The present method can be applied to analyze time series in a variety of fields, which in turn provide a basis for the development of further microscopic models for the system. © 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collective intelligence is an interdisciplinary subject and it has been explored for many different knowledge areas. As a proposal totally tied to the concept of information and information technologies and communication, it is considered as relevant the discussion about the topic within the scope of Information Science. Therefore, a descriptive and exploratory study was carried out from Pierre Levy's work, identifying the precepts of collective intelligence and its ambiences and implications. The research is documental, focusing on determining the state of the art of the production about collective intelligence, verifying what was produced by Pierre Lévy and by other authors about the subject, in order to point out what possible interventions of Information Science on studies about collective intelligence. The research showed that that in the field of Information Science there is little research on the theoretical level about collective intelligence. Nevertheless, discussions about the representation and organization of collective intelligence in digital environments have been recurrent in the present, thus opening new fields of approach between Information Science and conceptual research and practice in collective intelligence.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using a symbolic method, known in the literature as the classical umbral calculus, a symbolic representation of Lévy processes is given and a new family of time-space harmonic polynomials with respect to such processes, which includes and generalizes the exponential complete Bell polynomials, is introduced. The usefulness of time-space harmonic polynomials with respect to Lévy processes is that it is a martingale the stochastic process obtained by replacing the indeterminate x of the polynomials with a Lévy process, whereas the Lévy process does not necessarily have this property. Therefore to find such polynomials could be particularly meaningful for applications. This new family includes Hermite polynomials, time-space harmonic with respect to Brownian motion, Poisson-Charlier polynomials with respect to Poisson processes, Laguerre and actuarial polynomials with respect to Gamma processes , Meixner polynomials of the first kind with respect to Pascal processes, Euler, Bernoulli, Krawtchuk, and pseudo-Narumi polynomials with respect to suitable random walks. The role played by cumulants is stressed and brought to the light, either in the symbolic representation of Lévy processes and their infinite divisibility property, either in the generalization, via umbral Kailath-Segall formula, of the well-known formulae giving elementary symmetric polynomials in terms of power sum symmetric polynomials. The expression of the family of time-space harmonic polynomials here introduced has some connections with the so-called moment representation of various families of multivariate polynomials. Such moment representation has been studied here for the first time in connection with the time-space harmonic property with respect to suitable symbolic multivariate Lévy processes. In particular, multivariate Hermite polynomials and their properties have been studied in connection with a symbolic version of the multivariate Brownian motion, while multivariate Bernoulli and Euler polynomials are represented as powers of multivariate polynomials which are time-space harmonic with respect to suitable multivariate Lévy processes.