955 resultados para Korovkin theorem
Resumo:
In this paper, inspired by two very different, successful metric theories such us the real view-point of Lowen's approach spaces and the probabilistic field of Kramosil and Michalek's fuzzymetric spaces, we present a family of spaces, called fuzzy approach spaces, that are appropriate to handle, at the same time, both measure conceptions. To do that, we study the underlying metric interrelationships between the above mentioned theories, obtaining six postulates that allow us to consider such kind of spaces in a unique category. As a result, the natural way in which metric spaces can be embedded in both classes leads to a commutative categorical scheme. Each postulate is interpreted in the context of the study of the evolution of fuzzy systems. First properties of fuzzy approach spaces are introduced, including a topology. Finally, we describe a fixed point theorem in the setting of fuzzy approach spaces that can be particularized to the previous existing measure spaces.
Resumo:
This paper reworks and amplifies Reichert's proof of his theorem (1969) which asserts that any impedance function of a one-port electrical network which can be realised with two reactive elements and an arbitrary number of resistors can be realised with two reactive elements and three resistors. © 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper studies the radiation properties of the immiscible blend of nylon1010 and HIPS. The gel fraction increased with increasing radiation dose. The network was found mostly in nylon1010, the networks were also found in both nylon1010 and HIPS when the dose reaches 0.85 MGy or more. We used the Charleby-Pinner equation and the modified Zhang-Sun-Qian equation to simulate the relationship with the dose and the sol fraction. The latter equation fits well with these polymer blends and the relationship used by it showed better linearity than the one by the Charleby-Pinner equation. We also studied the conditions of formation of the network by the mathematical expectation theorem for the binary system. Thermal properties of polymer blend were observed by DSC curves. The crystallization temperature decreases with increasing dose because the cross-linking reaction inhibited the crystallization procession and destroyed the crystals. The melting temperature also reduced with increasing radiation dose. The dual melting peak gradually shifted to single peak and the high melting peak disappeared at high radiation dose. However, the radiation-induced crystallization was observed by the heat of fusion increasing at low radiation dose. On the other hand, the crystal will be damaged by radiation. A similar conclusion may be drawn by the DSC traces when the polymer blends were crystallized. When the radiation dose increases, the heat of fusion reduces dramatically and so does the heat of crystallization. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The digital divide continues to challenge political and academic circles worldwide. A range of policy solutions is briefly evaluated, from laissez-faire on the right to “arithmetic” egalitarianism on the left. The article recasts the digital divide as a problem for the social distribution of presumptively important information (e.g., electoral data, news, science) within postindustrial society. Endorsing in general terms the left-liberal approach of differential or “geometric” egalitarianism, it seeks to invest this with greater precision, and therefore utility, by means of a possibly original synthesis of the ideas of John Rawls and R. H. Tawney. It is argued that, once certain categories of information are accorded the status of “primary goods,” their distribution must then comply with principles of justice as articulated by those major 20th century exponents of ethical social democracy. The resultant Rawls-Tawney theorem, if valid, might augment the portfolio of options for interventionist information policy in the 21st century
Resumo:
Gough, John, 'Quantum Stratonovich Stochastic Calculus and the Quantum Wong-Zakai Theorem', Journal of Mathematical Physics. 47, 113509, (2006)
Resumo:
In this work we revisit the problem of the hedging of contingent claim using mean-square criterion. We prove that in incomplete market, some probability measure can be identified so that becomes -martingale under .This is in fact a new proposition on the martingale representation theorem. The new results also identify a weight function that serves to be an approximation to the Radon-Nikodým derivative of the unique neutral martingale measure.