866 resultados para Knee injuries


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Work-related injuries in Australia are estimated to cost around $57.5 billion annually, however there are currently insufficient surveillance data available to support an evidence-based public health response. Emergency departments (ED) in Australia are a potential source of information on work-related injuries though most ED’s do not have an ‘Activity Code’ to identify work-related cases with information about the presenting problem recorded in a short free text field. This study compared methods for interrogating text fields for identifying work-related injuries presenting at emergency departments to inform approaches to surveillance of work-related injury.---------- Methods: Three approaches were used to interrogate an injury description text field to classify cases as work-related: keyword search, index search, and content analytic text mining. Sensitivity and specificity were examined by comparing cases flagged by each approach to cases coded with an Activity code during triage. Methods to improve the sensitivity and/or specificity of each approach were explored by adjusting the classification techniques within each broad approach.---------- Results: The basic keyword search detected 58% of cases (Specificity 0.99), an index search detected 62% of cases (Specificity 0.87), and the content analytic text mining (using adjusted probabilities) approach detected 77% of cases (Specificity 0.95).---------- Conclusions The findings of this study provide strong support for continued development of text searching methods to obtain information from routine emergency department data, to improve the capacity for comprehensive injury surveillance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Inflatable Rescue Boat (IRB) is arguably the most effective rescue tool used by the Australian surf lifesavers. The exceptional features of high mobility and rapid response have enabled it to become an icon on Australia's popular beaches. However, the IRB's extensive use within an environment that is as rugged as it is spectacular, has led it to become a danger to those who risk their lives to save others. Epidemiological research revealed lower limb injuries to be predominant, particularly the right leg. The common types of injuries were fractures and dislocations, as well as muscle or ligament strains and tears. The concern expressed by Surf Life Saving Queensland (SLSQ) and Surf Life Saving Australia (SLSA) led to a biomechanical investigation into this unique and relatively unresearched field. The aim of the research was to identify the causes of injury and propose processes that may reduce the instances and severity of injury to surf lifesavers during IRB operation. Following a review of related research, a design analysis of the craft was undertaken as an introduction to the craft, its design and uses. The mechanical characteristics of the vessel were then evaluated and the accelerations applied to the crew in the IRB were established through field tests. The data were then combined and modelled in the 3-D mathematical modelling and simulation package, MADYMO. A tool was created to compare various scenarios of boat design and methods of operation to determine possible mechanisms to reduce injuries. The results of this study showed that under simulated wave loading the boats flex around a pivot point determined by the position of the hinge in the floorboard. It was also found that the accelerations experienced by the crew exhibited similar characteristics to road vehicle accidents. Staged simulations indicated the attributes of an optimum foam in terms of thickness and density. Likewise, modelling of the boat and crew produced simulations that predicted realistic crew response to tested variables. Unfortunately, the observed lack of adherence to the SLSA footstrap Standard has impeded successful epidemiological and modelling outcomes. If uniformity of boat setup can be assured then epidemiological studies will be able to highlight the influence of implementing changes to the boat design. In conclusion, the research provided a tool to successfully link the epidemiology and injury diagnosis to the mechanical engineering design through the use of biomechanics. This was a novel application of the mathematical modelling software MADYMO. Other craft can also be investigated in this manner to provide solutions to the problem identified and therefore reduce risk of injury for the operators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Management of osteoarthritis (OA) includes the use of non-pharmacological and pharmacological therapies. Although walking is commonly recommended for reducing pain and increasing physical function in people with OA, glucosamine sulphate has also been used to alleviate pain and slow the progression of OA. This study evaluated the effects of a progressive walking program and glucosamine sulphate intake on OA symptoms and physical activity participation in people with mild to moderate hip or knee OA. Methods: Thirty-six low active participants (aged 42 to 73 years) were provided with 1500 mg glucosamine sulphate per day for 6 weeks, after which they began a 12-week progressive walking program, while continuing to take glucosamine. They were randomized to walk 3 or 5 days per week and given a pedometer to monitor step counts. For both groups, step level of walking was gradually increased to 3000 steps/day during the first 6 weeks of walking, and to 6000 steps/day for the next 6 weeks. Primary outcomes included physical activity levels, physical function (self-paced step test), and the WOMAC Osteoarthritis Index for pain, stiffness and physical function. Assessments were conducted at baseline and at 6-, 12-, 18-, and 24-week follow-ups. The Mann Whitney Test was used to examine differences in outcome measures between groups at each assessment, and the Wilcoxon Signed Ranks Test was used to examine differences in outcome measures between assessments. Results: During the first 6 weeks of the study (glucosamine supplementation only), physical activity levels, physical function, and total WOMAC scores improved (P<0.05). Between the start of the walking program (Week 6) and the final follow-up (Week 24), further improvements were seen in these outcomes (P<0.05) although most improvements were seen between Weeks 6 and 12. No significant differences were found between walking groups. Conclusions: In people with hip or knee OA, walking a minimum of 3000 steps (~30 minutes), at least 3 days/week, in combination with glucosamine sulphate, may reduce OA symptoms. A more robust study with a larger sample is needed to support these preliminary findings. Trial Registration: Australian Clinical Trials Registry ACTRN012607000159459.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pedal cyclists are over-represented in traffic crash injuries in Australia. This study examined correlates of cycling injuries in a sample of Queensland cyclists. Members of Bicycle Queensland (n=1976) were asked about cycling injuries as part of an online survey. They also reported demographic characteristics, reasons for cycling, years of cycling as an adult, and cycling frequency. Multivariate logistic regression modelling was used to examine the association between these variables and experiencing cycling injuries last year (yes/no). Thirty-one percent of respondents (n=617) reported at least one cycling injury. Respondents had greater likelihood of injury if they cycled more frequently, had cycled <5 years, or cycled for recreation or competition. These findings suggest that injuries are mostly likely to occur among less experienced cyclists, those cycling the most, and those cycling for sport and recreation. Injury prevention interventions should include cycle skills training along with fostering safer cycling environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Physical activity (PA) is recommended for managing osteoarthritis (OA). However, few people with OA are physically active. Understanding the factors associated with PA is necessary to increase PA in this population. This cross-sectional study examined factors associated with leisure-time PA, stretching exercises, and strengthening exercises in people with OA. Methods: For a mail survey, 485 individuals, aged 68.0 y (SD=10.6) with hip or knee OA, were asked about factors that may influence PA participation, including use of non-PA OA management strategies and both psychological and physical health-related factors. Associations between factors and each PA outcome were examined in multivariable logistic regression models. Results: Non-PA management strategies were the main factors associated with the outcomes. Information/education courses, heat/cold treatments, and paracetamol were associated with stretching and strengthening exercises (P<0.05). Hydrotherapy and magnet therapy were associated with leisure-time PA; using orthotics and massage therapy, with stretching exercises; and occupational therapy, with strengthening exercises (P<0.05). Few psychological or health15 related factors were associated with the outcomes. Conclusions: Some management strategies may make it easier for people with OA to be physically active, and could be promoted to encourage PA. Providers of strategies are potential avenues for recruiting people with OA into PA programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main causes of above knee or transfemoral amputation (TFA) in the developed world is trauma to the limb. The number of people undergoing TFA due to limb trauma, particularly due to war injuries, has been increasing. Typically the trauma amputee population, including war-related amputees, are otherwise healthy, active and desire to return to employment and their usual lifestyle. Consequently there is a growing need to restore long-term mobility and limb function to this population. Traditionally transfemoral amputees are provided with an artificial or prosthetic leg that consists of a fabricated socket, knee joint mechanism and a prosthetic foot. Amputees have reported several problems related to the socket of their prosthetic limb. These include pain in the residual limb, poor socket fit, discomfort and poor mobility. Removing the socket from the prosthetic limb could eliminate or reduce these problems. A solution to this is the direct attachment of the prosthesis to the residual bone (femur) inside the residual limb. This technique has been used on a small population of transfemoral amputees since 1990. A threaded titanium implant is screwed in to the shaft of the femur and a second component connects between the implant and the prosthesis. A period of time is required to allow the implant to become fully attached to the bone, called osseointegration (OI), and be able to withstand applied load; then the prosthesis can be attached. The advantages of transfemoral osseointegration (TFOI) over conventional prosthetic sockets include better hip mobility, sitting comfort and prosthetic retention and fewer skin problems on the residual limb. However, due to the length of time required for OI to progress and to complete the rehabilitation exercises, it can take up to twelve months after implant insertion for an amputee to be able to load bear and to walk unaided. The long rehabilitation time is a significant disadvantage of TFOI and may be impeding the wider adoption of the technique. There is a need for a non-invasive method of assessing the degree of osseointegration between the bone and the implant. If such a method was capable of determining the progression of TFOI and assessing when the implant was able to withstand physiological load it could reduce the overall rehabilitation time. Vibration analysis has been suggested as a potential technique: it is a non destructive method of assessing the dynamic properties of a structure. Changes in the physical properties of a structure can be identified from changes in its dynamic properties. Consequently vibration analysis, both experimental and computational, has been used to assess bone fracture healing, prosthetic hip loosening and dental implant OI with varying degrees of success. More recently experimental vibration analysis has been used in TFOI. However further work is needed to assess the potential of the technique and fully characterise the femur-implant system. The overall aim of this study was to develop physical and computational models of the TFOI femur-implant system and use these models to investigate the feasibility of vibration analysis to detect the process of OI. Femur-implant physical models were developed and manufactured using synthetic materials to represent four key stages of OI development (identified from a physiological model), simulated using different interface conditions between the implant and femur. Experimental vibration analysis (modal analysis) was then conducted using the physical models. The femur-implant models, representing stage one to stage four of OI development, were excited and the modal parameters obtained over the range 0-5kHz. The results indicated the technique had limited capability in distinguishing between different interface conditions. The fundamental bending mode did not alter with interfacial changes. However higher modes were able to track chronological changes in interface condition by the change in natural frequency, although no one modal parameter could uniquely distinguish between each interface condition. The importance of the model boundary condition (how the model is constrained) was the key finding; variations in the boundary condition altered the modal parameters obtained. Therefore the boundary conditions need to be held constant between tests in order for the detected modal parameter changes to be attributed to interface condition changes. A three dimensional Finite Element (FE) model of the femur-implant model was then developed and used to explore the sensitivity of the modal parameters to more subtle interfacial and boundary condition changes. The FE model was created using the synthetic femur geometry and an approximation of the implant geometry. The natural frequencies of the FE model were found to match the experimental frequencies within 20% and the FE and experimental mode shapes were similar. Therefore the FE model was shown to successfully capture the dynamic response of the physical system. As was found with the experimental modal analysis, the fundamental bending mode of the FE model did not alter due to changes in interface elastic modulus. Axial and torsional modes were identified by the FE model that were not detected experimentally; the torsional mode exhibited the largest frequency change due to interfacial changes (103% between the lower and upper limits of the interface modulus range). Therefore the FE model provided additional information on the dynamic response of the system and was complementary to the experimental model. The small changes in natural frequency over a large range of interface region elastic moduli indicated the method may only be able to distinguish between early and late OI progression. The boundary conditions applied to the FE model influenced the modal parameters to a far greater extent than the interface condition variations. Therefore the FE model, as well as the experimental modal analysis, indicated that the boundary conditions need to be held constant between tests in order for the detected changes in modal parameters to be attributed to interface condition changes alone. The results of this study suggest that in a clinical setting it is unlikely that the in vivo boundary conditions of the amputated femur could be adequately controlled or replicated over time and consequently it is unlikely that any longitudinal change in frequency detected by the modal analysis technique could be attributed exclusively to changes at the femur-implant interface. Therefore further development of the modal analysis technique would require significant consideration of the clinical boundary conditions and investigation of modes other than the bending modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human knee acts as a sophisticated shock absorber during landing movements. The ability of the knee to perform this function in the real world is remarkable given that the context of the landing movement may vary widely between performances. For this reason, humans must be capable of rapidly adjusting the mechanical properties of the knee under impact load in order to satisfy many competing demands. However, the processes involved in regulating these properties in response to changing constraints remain poorly understood. In particular, the effects of muscle fatigue on knee function during step landing are yet to be fully explored. Fatigue of the knee muscles is significant for 2 reasons. First, it is thought to have detrimental effects on the ability of the knee to act as a shock absorber and is considered a risk factor for knee injury. Second, fatigue of knee muscles provides a unique opportunity to examine the mechanisms by which healthy individuals alter knee function. A review of the literature revealed that the effect of fatigue on knee function during landing has been assessed by comparing pre and postfatigue measurements, with fatigue induced by a voluntary exercise protocol. The information is limited by inconsistent results with key measures, such as knee stiffness, showing varying results following fatigue, including increased stiffness, decreased stiffness or failure to detect any change in some experiments. Further consideration of the literature questions the validity of the models used to induce and measure fatigue, as well as the pre-post study design, which may explain the lack of consensus in the results. These limitations cast doubt on the usefulness of the available information and identify a need to investigate alternative approaches. Based on the results of this review, the aims of this thesis were to: • evaluate the methodological procedures used in validation of a fatigue model • investigate the adaptation and regulation of post-impact knee mechanics during repeated step landings • use this new information to test the effects of fatigue on knee function during a step-landing task. To address the aims of the thesis, 3 related experiments were conducted that collected kinetic, kinematic and electromyographic data from 3 separate samples of healthy male participants. The methodologies involved optoelectronic motion capture (VICON), isokinetic dynamometry (System3 Pro, BIODEX) and wireless surface electromyography (Zerowire, Aurion, Italy). Fatigue indicators and knee function measures used in each experiment were derived from the data. Study 1 compared the validity and reliability of repetitive stepping and isokinetic contractions with respect to fatigue of the quadriceps and hamstrings. Fifteen participants performed 50 repetitions of each exercise twice in randomised order, over 4 sessions. Sessions were separated by a minimum of 1 week’s rest, to ensure full recovery. Validity and reliability depended on a complex interaction between the exercise protocol, the fatigue indicator, the individual and the muscle of interest. Nevertheless, differences between exercise protocols indicated that stepping was less effective in eliciting valid and reliable changes in peak power and spectral compression, compared with isokinetic exercise. A key finding was that fatigue progressed in a biphasic pattern during both exercises. The point separating the 2 phases, known as the transition point, demonstrated superior between-test reliability during the isokinetic protocol, compared with stepping. However, a correction factor should be used to accurately apply this technique to the study of fatigue during landing. Study 2 examined alterations in knee function during repeated landings, with a different sample (N =12) performing 60 consecutive step landing trials. Each landing trial was separated by 1-minute rest periods. The results provided new information in relation to the pre-post study design in the context of detecting adjustments in knee function during landing. First, participants significantly increased or decreased pre-impact muscle activity or post-impact mechanics despite environmental and task constraints remaining unchanged. This is the 1st study to demonstrate this effect in healthy individuals without external feedback on performance. Second, single-subject analysis was more effective in detecting alterations in knee function compared to group-level analysis. Finally, repeated landing trials did not reduce inter-trial variability of knee function in some participants, contrary to assumptions underpinning previous studies. The results of studies 1 and 2 were used to modify the design of Study 3 relative to previous research. These alterations included a modified isokinetic fatigue protocol, multiple pre-fatigue measurements and singlesubject analysis to detect fatigue-related changes in knee function. The study design incorporated new analytical approaches to investigate fatiguerelated alterations in knee function during landing. Participants (N = 16) were measured during multiple pre-fatigue baseline trial blocks prior to the fatigue model. A final block of landing trials was recorded once the participant met the operational fatigue definition that was identified in Study 1. The analysis revealed that the effects of fatigue in this context are heavily dependent on the compensatory response of the individual. A continuum of responses was observed within the sample for each knee function measure. Overall, preimpact preparation and post-impact mechanics of the knee were altered with highly individualised patterns. Moreover, participants used a range of active or passive pre-impact strategies to adapt post-impact mechanics in response to quadriceps fatigue. The unique patterns identified in the data represented an optimisation of knee function based on priorities of the individual. The findings of these studies explain the lack of consensus within the literature regarding the effects of fatigue on knee function during landing. First, functional fatigue protocols lack validity in inducing fatigue-related changes in mechanical output and spectral compression of surface electromyography (sEMG) signals, compared with isokinetic exercise. Second, fatigue-related changes in knee function during landing are confounded by inter-individual variation, which limits the sensitivity of group-level analysis. By addressing these limitations, the 3rd study demonstrated the efficacies of new experimental and analytical approaches to observe fatigue-related alterations in knee function during landing. Consequently, this thesis provides new perspectives into the effects of fatigue in knee function during landing. In conclusion: • The effects of fatigue on knee function during landing depend on the response of the individual, with considerable variation present between study participants, despite similar physical characteristics. • In healthy males, adaptation of pre-impact muscle activity and postimpact knee mechanics is unique to the individual and reflects their own optimisation of demands such as energy expenditure, joint stability, sensory information and loading of knee structures. • The results of these studies should guide future exploration of adaptations in knee function to fatigue. However, research in this area should continue with reduced emphasis on the directional response of the population and a greater focus on individual adaptations of knee function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adolescent injury is a significant health concern and can be a result of the adolescents engagement in transport-related behaviours. There is however significant planning and formative research needed to inform prevention programme design. This presentation reports on the development and evaluation of a curriculum programme that was shown to be effective in reducing transport-related risks and injuries. Early adolescents report injuries resulting from a number of transport-related behaviours including those associated with riding a bicycle, a motorcycle, and as a passenger (survey of 209 Year 9 students). In focus groups, students (n=30) were able to describe the context of transport risks and injuries. Such information provided evidence of the need for an intervention and ecologically valid data on which to base programme design including insights into the language, culture and development of adolescents and their experiences with transport risks. Additional information about teaching practices and implementation issues were explored in interviews with 13 teachers. A psychological theory was selected to operationalise the design of the programmes that drew on such preparatory data. The programme, Skills for Preventing Injury in Youth was evaluated with 197 participating and 137 control students (13–14 year olds). Results showed a significant difference between the intervention and control groups from baseline to 6-month follow-up in a number of transport-related risk behaviours and transport-related injuries. The programme thus demonstrated potential in reduce early adolescents transport risk behaviours and associated harm. Discussion will involve the implications of the development research process in designing road safety interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been no direct attempt to evaluate whether gait performed overground and on a treadmill is the same for lower limb amputees. A multiple case study approach was adopted to explore the degenerate movement behavior displayed by three male amputees. Participants walked overground at a self-selected preferred pace and when this speed was enforced on a treadmill (50 stride cycles per condition). The extremities of motion (i.e., maximum flexion) for the hip and knee joints differed between conditions (0.2–3.8°). For two participants, the temporal asymmetry of gait was reduced on the treadmill. Initial data suggest that research on amputees simulating overground walking on a treadmill might need to be interpreted with some caution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adolescents engage in many risk-taking behaviors that have the potential to lead to injury. The school environment has a significant role in shaping adolescent behavior, and this study aimed to provide additional information about the benefits associated with connectedness to school. Early adolescents aged 13 to 15 years (N = 509, 49% boys) were surveyed about school connectedness, engagement in transport and violence risk-taking, and injury experiences. Significant relations were found between school connectedness and reduced engagement in both transport and violence risk-taking, as well as fewer associated injuries. This study has implications for the area of risk-taking and injury prevention, as it suggests the potential for reducing adolescents' injury through school based interventions targeting school connectedness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Injury is the leading cause of death among adolescents, and in many countries, accounts for more deaths than all other causes combined. Rates of death due to injury also increase dramatically across adolescence. The Australian Institute of Health and Welfare reported that, in 2005, there were 954 deaths of young Australians due to injury, which is a rate of 26 deaths per 100,000 young people. Of these deaths, 4% were adolescents aged 12-14, 17% were aged 15-17, and 80% were aged 18-24 years. Issues addressed: Injuries are the leading cause of death among adolescents. The current research examined a measure of adolescent injury in terms of whether it encompasses the diverse injury experiences of Australian adolescents, including high-risk and normative adolescents, and thus determine its utility as a tool for health promotion research. Grade 9 students from two Brisbane high schools (n=202, aged 13-14 years) and adolescents recruited from the Emergency Department waiting rooms of four Brisbane hospitals (n=98, aged 16-18 years) completed the Extended Adolescent Injury Checklist (E-AIC). The most common cause of injury among adolescents was a sports activity, followed by fights for all participants except schoolbased males, who experienced more bicycle injuries. Alcohol use was most frequently reported in association with interpersonal violence injuries. A broad variety of injuries, occurring in context of multiple risk as well as normative behaviours, were reported by adolescents in both school and ED settings, and were captured by the E-AIC. Findings suggest that the E-AIC is a useful measure that captures the injury experiences of adolescents in different contexts. The high occurrence of injuries that do not result in formal medical treatment also indicates scope for interventions to be based around lessons in first aid, while also incorporating injury prevention components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bicycle injuries, particularly those resulting from single bicycle crashes, are underreported in both police and hospital records. Data on cyclist characteristics and crash circumstances are also often lacking. As a result, the ability to develop comprehensive injury prevention policies is hampered. The aim of this study was to examine the incidence, severity, cyclist characteristics, and crash circumstances associated with cycling injuries in a sample of cyclists in Queensland, Australia. A cross-sectional study of Queensland cyclists was conducted in 2009. Respondents (n=2056) completed an online survey about their cycling experiences, including cycling injuries. Logistic regression modelling was used to examine the associations between demographic and cycling behaviour variables with experiencing cycling injuries in the past year, and, separately, with serious cycling injuries requiring a trip to a hospital. Twenty-seven percent of respondents (n=545) reported injuries, and 6% (n=114) reported serious injuries. In multivariable modelling, reporting an injury was more likely for respondents who had cycled <5 years, compared to ≥10 years (p<0.005); cycled for competition (p=0.01); or experienced harassment from motor vehicle occupants (p<0.001). There were no gender differences in injury incidence, and respondents who cycled for transport did not have an increased risk of injury. Reporting a serious injury was more likely for those whose injury involved other road users (p<0.03). Along with environmental and behavioural approaches for reducing collisions and near-collisions with motor vehicles, interventions that improve the design and maintenance of cycling infrastructure, increase cyclists’ skills, and encourage safe cycling behaviours and bicycle maintenance will also be important for reducing the overall incidence of cycling injuries.