983 resultados para Kinetics uptake


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the relationship between picoeukaryote phytoplankton (< 2 mu m) and the deep layer of new production (NO3- uptake) in the nitracline of the eastern subtropical North Atlantic Ocean. Indices of NO3- uptake kinetics obtained within the lower 15 % of the euphotic zone demonstrate that subsurface NO3- uptake maxima are coincident with localised peaks in maximum uptake rates (V-max) and, crucially, with maximum picoeukaryote abundance. The mean rate of NO3- utilization at the nitracline is typically 10-fold higher than in surface waters despite much lower in situ irradiance. These observations confirm a high affinity for NO3-, most likely by the resident picoeukaryote community, and we conservatively estimate mean cellular uptake rates of between 0.27 and 1.96 fmol NO3- cell(-1) h(-1). Greater scrutiny of the taxonomic composition of the picoeukaryote group is required to further understand this deep layer of new production and its importance for nitrogen cycling and export production, given longstanding assumptions that picoplankton do not contribute directly to export fluxes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study aimed to investigate the effects of root surface iron plaque on the uptake kinetics of arsenite and arsenate by excised roots of rice (Oryza sativa) seedlings. The results demonstrated that the presence of iron plaque enhanced arsenite and decreased arsenate uptake. Arsenite and arsenate uptake kinetics were adequately fitted by the Michaelis-Menten function in the absence of plaque, but produced poor fits to this function in the presence of plaque. Phosphate in the uptake solution did not have a significant effect on arsenite uptake irrespective of the presence of iron plaque; however phosphate had a significant effect on arsenate uptake. Without iron plaque, phosphate inhibited arsenate uptake. The presence of iron plaque diminished the effect of phosphate on arsenate uptake, possibly through a combined effect of arsenate desorption from iron plaque.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Duckweeds are a common macrophyte in paddy and aquatic environments. Here, we investigated arsenic (As) accumulation, speciation and tolerance of the rootless duckweed Wolffia globosa and its potential for As phytofiltration.

When grown with 1 mu M arsenate, W. globosa accumulated two to 10 times more As than four other duckweed or Azolla species tested. W. globosa was able to accumulate > 1000 mg As kg(-1) in frond dry weight (DW), and tolerate up to 400 mg As kg-1 DW. At the low concentration range, uptake rate was similar for arsenate and arsenite, but at the high concentration range, arsenite was taken up at a faster rate.

Arsenite was the predominant As species (c. 90% of the total extractable As) in both arsenate-and arsenite-exposed duckweed. W. globosa was more resistant to external arsenate than arsenite, but showed a similar degree of tolerance internally. W. globosa decreased arsenate in solution rapidly, but also effluxed arsenite.

Wolffia globosa is a strong As accumulator and an interesting model plant to study As uptake and metabolism because of the lack of a root-to-frond translocation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influx of arsenate, arsenite and dimethyl arsinic acid (DMA) were studied in 7-day-old excised maize roots (Zea mays L.), and then related to arsenate, arsenite and DMA toxicity. Arsenate, arsenite and DMA influx was all found concentration dependent with significant genotypic differences for arsenite and DMA. Arsenate influx in phosphate starved plants best fitted the four-parameter Michaelis-Menten model corresponding to an additive high and low affinity uptake system, while the uptake of phosphate replete plants followed the two parameter model of Michaelis-Menten kinetics. Arsenite influx was well described by the two parameter model of 'Michaelis-Menten' kinetics. DMA influx was comprised of linear phase and a hyperbolic phase. DMA influx was much lower than that for arsenite and arsenate. Arsenate and DMA influx decreased when phosphate was given as a pre-treatment as opposed to phosphate starved plants. The +P treatment tended to decrease influx by 50% for arsenate while this figure was 90% for DMA. Arsenite influx increasing slightly at higher arsenite concentrations in P starved plants but at lower arsenite concentrations, there was little or no difference in arsenite uptake. Low toxicity was found for DMA on maize compared with arsenate and arsenite and the relative toxicity of arsenic species was As(V) > As(III) >> DMA. © 2008 Springer Science+Business Media B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uptake kinetics of arsenate were determined in arsenate tolerant and non-tolerant clones of the grass Deschampsia cespitosa under differing root phosphorus status to investigate the mechanism controlling the suppression of arsenate influx observed in tolerant clones. Influx was always lower in tolerants compared to non-tolerants. Short term influx of arsenate by the high affinity uptake system in both tolerant clones was relatively insensitive to root phosphorus status. This was in contrast to the literature where the regulation of the phosphate (arsenate) uptake system is normally much more responsive to plant phosphorus status. The low affinity uptake system in both tolerant and non-tolerant clones, unlike the high affinity uptake system, was more closely regulated by root phosphate status and was repressed to a much greater degree under increasing root phosphorus levels than the high affinity system. © 1994 Kluwer Academic Publishers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Holcus lanatus L. phosphate and arsenate are taken up by the same transport system. Short-term uptake kinetics of the high affinity arsenate transport system were determined in excised roots of arsenate-tolerant and non-tolerant genotypes. In tolerant plants the Vmax of ion uptake in plants grown in phosphate-free media was decreased compared to non-tolerant plants, and the affinity of the uptake system was lower than in the non-tolerant plants. Both the reduction in Vmax and the increase in Km led to reduced arsenate influx into tolerant roots. When the two genotypes were grown in nutrient solution containing high levels of phosphate, there was little change in the uptake kinetics in tolerant plants. In non-tolerant plants, however, there was a marked decrease in the Vmax to the level of the tolerant plants but with little change in the Km. This suggests that the low rate of arsenate uptake over a wide range of differing root phosphate status is due to loss of induction of the synthesis of the arsenate (phosphate) carrier. © 1992 Oxford University Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: The purpose of this study was to develop a mathematical model (sine model, SIN) to describe fat oxidation kinetics as a function of the relative exercise intensity [% of maximal oxygen uptake (%VO2max)] during graded exercise and to determine the exercise intensity (Fatmax) that elicits maximal fat oxidation (MFO) and the intensity at which the fat oxidation becomes negligible (Fatmin). This model included three independent variables (dilatation, symmetry, and translation) that incorporated primary expected modulations of the curve because of training level or body composition. METHODS: Thirty-two healthy volunteers (17 women and 15 men) performed a graded exercise test on a cycle ergometer, with 3-min stages and 20-W increments. Substrate oxidation rates were determined using indirect calorimetry. SIN was compared with measured values (MV) and with other methods currently used [i.e., the RER method (MRER) and third polynomial curves (P3)]. RESULTS: There was no significant difference in the fitting accuracy between SIN and P3 (P = 0.157), whereas MRER was less precise than SIN (P < 0.001). Fatmax (44 +/- 10% VO2max) and MFO (0.37 +/- 0.16 g x min(-1)) determined using SIN were significantly correlated with MV, P3, and MRER (P < 0.001). The variable of dilatation was correlated with Fatmax, Fatmin, and MFO (r = 0.79, r = 0.67, and r = 0.60, respectively, P < 0.001). CONCLUSIONS: The SIN model presents the same precision as other methods currently used in the determination of Fatmax and MFO but in addition allows calculation of Fatmin. Moreover, the three independent variables are directly related to the main expected modulations of the fat oxidation curve. SIN, therefore, seems to be an appropriate tool in analyzing fat oxidation kinetics obtained during graded exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics of uptake of gaseous N2O5 on submicron aerosols containing NaCl and natural sea salt have been investigated in a flow reactor as a function of relative humidity (RH) in the range 30-80% at 295±2K and a total pressure of 1bar. The measured uptake coefficients, γ, were larger on the aerosols containing sea salt compared to those of pure NaCl, and in both cases increased with increasing RH. These observations are explained in terms of the variation in the size of the salt droplets, which leads to a limitation in the uptake rate into small particles. After correction for this effect the uptake coefficients are independent of relative humidity, and agree with those measured previously on larger droplets. A value of γ=0.025 is recommended for the reactive uptake coefficient for N2O5 on deliquesced sea salt droplets at 298K and RH>40%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to apply and compare two time-domain analysis procedures in the determination of oxygen uptake (VO2) kinetics in response to a pseudorandom binary sequence (PRBS) exercise test. PRBS exercise tests have typically been analysed in the frequency domain. However, the complex interpretation of frequency responses may have limited the application of this procedure in both sporting and clinical contexts, where a single time measurement would facilitate subject comparison. The relative potential of both a mean response time (MRT) and a peak cross-correlation time (PCCT) was investigated. This study was divided into two parts: a test-retest reliability study (part A), in which 10 healthy male subjects completed two identical PRBS exercise tests, and a comparison of the VO2 kinetics of 12 elite endurance runners (ER) and 12 elite sprinters (SR; part B). In part A, 95% limits of agreement were calculated for comparison between MRT and PCCT. The results of part A showed no significant difference between test and retest as assessed by MRT [mean (SD) 42.2 (4.2) s and 43.8 (6.9) s] or by PCCT [21.8 (3.7) s and 22.7 (4.5) s]. Measurement error (%) was lower for MRT in comparison with PCCT (16% and 25%, respectively). In part B of the study, the VO2 kinetics of ER were significantly faster than those of SR, as assessed by MRT [33.4 (3.4) s and 39.9 (7.1) s, respectively; P<0.01] and PCCT [20.9 (3.8) s and 24.8 (4.5) s; P < 0.05]. It is possible that either analysis procedure could provide a single test measurement Of VO2 kinetics; however, the greater reliability of the MRT data suggests that this method has more potential for development in the assessment Of VO2 kinetics by PRBS exercise testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutinous rice (or sticky rice) has to be soaked in water over an extended period of time before cooking. Soaking provides some of the water needed for starch gelatinisation to occur during cooking. The extent of water uptake during soaking is known to be influenced by temperature. This paper explores the use of very high pressures up to 600 MPa to accelerate water uptake kinetics during soaking. Changes occurring in length, diameter and moisture content were determined as a function of soaking time, pressure and temperature. The results show that length and diameter are positively correlated with all three parameters. However, the expansion ratios are not very high: the maximum length expansion ratio observed was 1.2, while the maximum diameter expansion ratio was 1. 1. Given these low values, it was possible to model water uptake kinetics by using the well-known Fickian model applied to a finite cylinder, assuming uniform average dimensions and effective diffusion coefficient. The results showed that the overall rates of water uptake and the equilibrium moisture content increased with pressure and temperature. The effective diffusion coefficient, on the other hand, did not follow the same trend. Temperature influenced the effective diffusion coefficient below 300 MPa, but had a marginal effect at higher pressures. Moreover, the effective diffusion coefficient increased with temperature between 20 and 50 degrees C, but dropped at higher temperatures. This drop can be attributed to the gelatinisation of starch, which restricts the transport of water. Regardless, it is possible to increase the quantity of water absorbed by rice and the rate at which it is absorbed, by using high pressures and temperatures. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ozonolysis of methyl oleate monolayers at the air–water interface results in surprisingly rapid loss of material through cleavage of the C[double bond, length as m-dash]C bond and evaporation/dissolution of reaction products. We determine using neutron reflectometry a rate coefficient of (5.7 ± 0.9) × 10−10 cm2 molecule−1 s−1 and an uptake coefficient of [similar]3 × 10−5 for the oxidation of a methyl ester monolayer: the atmospheric lifetime is [similar]10 min. We obtained direct experimental evidence that <2% of organic material remains at the surface on atmospheric timescales. Therefore known long atmospheric residence times of unsaturated fatty acids suggest that these molecules cannot be present at the interface throughout their ageing cycle, i.e. the reported atmospheric longevity is likely to be attributed to presence in the bulk and viscosity-limited reactive loss. Possible reaction products were characterized by ellipsometry and uncertainties in the atmospheric fate of organic surfactants such as oleic acid and its methyl ester are discussed. Our results suggest that a minor change to the structure of the molecule (fatty acid vs. its methyl ester) considerably impacts on reactivity and fate of the organic film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this research was the development of a procedure to measure biological kinetics of organic matter oxidation and nitrification in constructed wetland, by using respirometric techniques. Columns simulating cores of vertical subsurface flow systems were investigated. The oxygen uptake rate (OUR) of the columns was calculated on the basis of the difference of DO concentrations measured continuously at the top and at the bottom of the column. From the respirogram, the following kinetic parameters have been evaluated: maximum rate of oxidation of readily biodegradable COD, maximum rate of nitrification, endogenous respiration of the biomass grown inside the bed. In order to improve the interpretation of the respirograms, additional respirometric tests were carried out on the wetland columns by using pure substrates, such as acetate (carbon source) and ammonium (substrate for nitrification). The kinetic parameters obtained from respirograms can be useful for control and design of constructed wetlands or for improving nutrient and carbon mass balances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to verify the effect of the exercise mode on slow component of VO(2) (VO(2)SC) in children aged 11-12 years during severe-intensity exercise. After determination of the lactate threshold (LT) and peak VO(2) (VO(2)peak) in both cycling (CE) and running exercise (TR), fourteen active boys completed a series of "square-wave" transitions of 6-min duration at 75%Delta [75%Delta = LT + 0.75 X (VO(2)peak-LT)l to determine the VO(2) kinetics. The VO(2)SC was significantly higher in CE (180.5 +/- 155.8 ml . min(-1)) than in TR (113.0 +/- 84.2 ml . min(-1)). We can conclude that, although a VO(2)SC does indeed develop during TR in children, its magnitude is considerably lower than in CE during severe-intensity exercise.