534 resultados para Key stakeholders in science education
Resumo:
The purpose of this study is multifaceted: 1) to describe eScience research in acomprehensive way; 2) to help library and information specialists understand the realm of eScience research and the information needs of the community and demonstrate the importance of LIS professionals within the eScience domain; 3) and to explore the current state of curricular content of ALA accredited MLS/MLIS programs to understand the extent to which they prepare new professionals within eScience librarianship. The literature review focuses heavily on eScientists and other data-driven researchers’ information service needs in addition to demonstrating how and why librarians and information specialists can and should fulfill these service gaps and information needs within eScience research. By looking at the current curriculum of American Library Association (ALA) accredited MLS/MLIS programs, we can identify potential gaps in knowledge and where to improve in order to prepare and train new MLS/MLIS graduates to fulfill the needs of eScientists. This investigation is meant to be informative and can be used as a tool for LIS programs to assess their curriculums in comparison to the needs of eScience and other data-driven and networked research. Finally, this investigation will provide awareness and insight into the services needed to support a thriving eScience and data-driven research community to the LIS profession.
Resumo:
Background: Numerous international policy drivers espouse the need to improve healthcare. The application of Improvement Science has the potential to restore the balance of healthcare and transform it to a more person-centred and quality improvement focussed system. However there is currently no accredited Improvement Science education offered routinely to healthcare students. This means that there are a huge number of healthcare professionals who do not have the conceptual or experiential skills to apply Improvement Science in everyday practise. Methods: This article describes how seven European Higher Education Institutions (HEIs) worked together to develop four evidence informed accredited inter-professional Improvement Science modules for under and postgraduate healthcare students. It outlines the way in which a Policy Delphi, a narrative literature review, a review of the competency and capability requirements for healthcare professionals to practise Improvement Science, and a mapping of current Improvement Science education informed the content of the modules. Results: A contemporary consensus definition of Healthcare Improvement Science was developed. The four Improvement Science modules that have been designed are outlined. A framework to evaluate the impact modules have in practise has been developed and piloted. Conclusion: The authors argue that there is a clear need to advance healthcare Improvement Science education through incorporating evidence based accredited modules into healthcare professional education. They suggest that if Improvement Science education, that incorporates work based learning, becomes a staple part of the curricula in inter-professional education then it has real promise to improve the delivery, quality and design of healthcare.
Resumo:
Includes bibliographical references.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
The need for improvement in the development of research careers and researchers’ training in transferable skills was highlighted in two particular recommendations (numbers 4.2 and 5.3) in the 2002 report ‘SET for success: the report of Sir Gareth Roberts’ Review - the supply of people with science, technology, engineering and mathematics skills’ (Roberts, 2002). As a consequence of that review, Research Councils UK (RCUK)1 have invested about £120 million, usually referred to as ’Roberts’ Money’, in research organisations to address this concern in all research disciplines. The last ‘Roberts’ Money’ payment will be for the period up to March 2011; it was therefore proposed to assess the progress made with taking forward these specific recommendations. An independent panel was formed by RCUK to undertake this review in 2010. The terms of reference for the panel are in Annex A. In summary, the panel was asked to review progress made and to advise RCUK and the higher education (HE) sector about future requirements for the development and training of researchers. In the course of their review, the panel considered a wide range of existing reports, interviewed key stakeholders in the HE sector and elsewhere, as well as drawing on their own knowledge and expertise. This report presents the findings of the panel’s review.
Resumo:
Main styles, or paradigms of programming – imperative, functional, logic, and object-oriented – are shortly described and compared, and corresponding programming techniques are outlined. Programming languages are classified in accordance with the main style and techniques supported. It is argued that profound education in computer science should include learning base programming techniques of all main programming paradigms.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2016