929 resultados para KINESIN-RELATED PROTEIN
Resumo:
Adaptor protein complexes (APs) function as vesicle coat components in different membrane traffic pathways; however, there are a number of pathways for which there is still no candidate coat. To find novel coat components related to AP complexes, we have searched the expressed sequence tag database and have identified, cloned, and sequenced a new member of each of the four AP subunit families. We have shown by a combination of coimmunoprecipitation and yeast two-hybrid analysis that these four proteins (ε, β4, μ4, and ς4) are components of a novel adaptor-like heterotetrameric complex, which we are calling AP-4. Immunofluorescence reveals that AP-4 is localized to ∼10–20 discrete dots in the perinuclear region of the cell. This pattern is disrupted by treating the cells with brefeldin A, indicating that, like other coat proteins, the association of AP-4 with membranes is regulated by the small GTPase ARF. Immunogold electron microscopy indicates that AP-4 is associated with nonclathrin-coated vesicles in the region of the trans-Golgi network. The μ4 subunit of the complex specifically interacts with a tyrosine-based sorting signal, indicating that, like the other three AP complexes, AP-4 is involved in the recognition and sorting of cargo proteins with tyrosine-based motifs. AP-4 is of relatively low abundance, but it is expressed ubiquitously, suggesting that it participates in a specialized trafficking pathway but one that is required in all cell types.
Resumo:
Mitogen-activated protein (MAP) kinases are pivotal components of eukaryotic signaling cascades. Phosphorylation of tyrosine and threonine residues activates MAP kinases, but either dual-specificity or monospecificity phosphatases can inactivate them. The Candida albicans CPP1 gene, a structural member of the VH1 family of dual- specificity phosphatases, was previously cloned by its ability to block the pheromone response MAP kinase cascade in Saccharomyces cerevisiae. Cpp1p inactivated mammalian MAP kinases in vitro and acted as a tyrosine-specific enzyme. In C. albicans a MAP kinase cascade can trigger the transition from the budding yeast form to a more invasive filamentous form. Disruption of the CPP1 gene in C. albicans derepressed the yeast to hyphal transition at ambient temperatures, on solid surfaces. A hyphal growth rate defect under physiological conditions in vitro was also observed and could explain a reduction in virulence associated with reduced fungal burden in the kidneys seen in a systemic mouse model. A hyper-hyphal pathway may thus have some detrimental effects on C. albicans cells. Disruption of the MAP kinase homologue CEK1 suppressed the morphological effects of the CPP1 disruption in C. albicans. The results presented here demonstrate the biological importance of a tyrosine phosphatase in cell-fate decisions and virulence in C. albicans.
Resumo:
MARCKS-related protein (MRP) is a myristoylated protein kinase C substrate that binds calmodulin (CaM) with nanomolar affinity. To obtain structural information on this protein, we have engineered 10 tryptophan residues between positions 89 and 104 in the effector domain, a 24-residue-long amphipathic segment that mediates binding of MRP to CaM. We show that the effector domain is in a polar environment in free MRP, suggesting exposure to water, in agreement with a rod-shaped structure of the protein. The effector domain participates in the binding of MRP to CaM, as judged by the dramatic changes observed in the fluorescent properties of the mutants on complex formation. Intermolecular quenching of the fluorescence emission of the tryptophan residues in MRP by selenomethionine residues engineered in CaM reveals that the N-terminal side of the effector domain contacts the C-terminal domain of CaM, whereas the C-terminal side of the effector domain contacts the N-terminal domain of CaM. Finally, a comparison of the fluorescent properties of the myristoylated and unmyristoylated forms of a construct in which a tryptophan residue was introduced at position 4 close to the myristoylated N terminus of MRP suggests that the lipid moiety is also involved in the interaction of MRP with CaM.
Resumo:
Coagulation in crayfish blood is based on the transglutaminase-mediated crosslinking of a specific plasma clotting protein. Here we report the cloning of the subunit of this clotting protein from a crayfish hepatopancreas cDNA library. The ORF encodes a protein of 1,721 amino acids, including a signal peptide of 15 amino acids. Sequence analysis reveals that the clotting protein is homologous to vitellogenins, which are proteins found in vitellogenic females of egg-laying animals. The clotting protein and vitellogenins are all lipoproteins and share a limited sequence similarity to certain other lipoproteins (e.g., mammalian apolipoprotein B and microsomal triglyceride transfer protein) and contain a stretch with similarity to the D domain of mammalian von Willebrand factor. The crayfish clotting protein is present in both sexes, unlike the female-specific vitellogenins. Electron microscopy was used to visualize individual clotting protein molecules and to study the transglutaminase-mediated clotting reaction. In the presence of an endogenous transglutaminase, the purified clotting protein molecules rapidly assemble into long, flexible chains that occasionally branch.
Resumo:
Symbiosis between Rhizobium and its leguminous host requires elaborate communication between the partners throughout the interaction process. A calmodulin-like protein, termed calsymin, was identified in Rhizobium etli; a calmodulin-related protein in a Gram-negative bacterium had not been described previously. Calsymin possesses three repeated homologous domains. Each domain contains two predicted EF-hand Ca2+-binding motifs. Ca2+-binding activity of calsymin was demonstrated on purified protein. R. etli efficiently secretes calsymin without N-terminal cleavage of the protein. The gene encoding calsymin, casA, is exclusively expressed during colonization and infection of R. etli with the host. Expression of casA is controlled by a repressor protein, termed CasR, belonging to the TetR family of regulatory proteins. Mutation of the casA gene affects the development of bacteroids during symbiosis and symbiotic nitrogen fixation.
Resumo:
Recently, several proteins have been identified that are related in their sequence to the p53 tumor-suppressor protein. One of these proteins, which is termed p73, exhibits sequence homology to the p53 transcriptional activation, DNA binding, and oligomerization domains. The adenovirus E1B 55-kDa protein, the adenovirus E4orf6 protein, and SV40 T antigen each can bind to p53 and inhibit p53 function. Here we demonstrate that the adenovirus E4orf6 protein, but not the E1B 55-kDa protein or T antigen, interacts with p73. The E4orf6 protein inhibits p73-mediated transcriptional activation and cell killing in a manner similar to its effect on p53. Thus, only a subset of viral oncoproteins that antagonize p53 function also interacts with the related p73 protein.
Resumo:
Mutations in either of two human presenilin genes (PS1 and PS2) cause Alzheimer’s disease. Here we describe genetic and physical interactions between Caenorhabditis elegans SEL-10, a member of the Cdc4p family of proteins, and SEL-12, a C. elegans presenilin. We show that loss of sel-10 activity can suppress the egg-laying defective phenotype associated with reducing sel-12 activity, and that SEL-10 can physically complex with SEL-12. Proteins of the Cdc4p family have been shown to target proteins for ubiquitin-mediated turnover. The functional and physical interaction between sel-10 and sel-12 therefore offers an approach to understanding how presenilin levels are normally regulated.
Resumo:
Parathyroid hormone-related protein (PTHrP) is a prohormone that is posttranslationally processed to a family of mature secretory forms, each of which has its own cognate receptor(s) on the cell surface that mediate the actions of PTHrP. In addition to being secreted via the classical secretory pathway and interacting with cell surface receptors in a paracrine/autocrine fashion, PTHrP appears to be able to enter the nucleus directly following translation and influence cellular events in an “intracrine” fashion. In this report, we demonstrate that PTHrP can be targeted to the nucleus in vascular smooth muscle cells, that this nuclear targeting is associated with a striking increase in mitogenesis, that this nuclear effect on proliferation is the diametric opposite of the effects of PTHrP resulting from interaction with cell surface receptors on vascular smooth muscle cells, and that the regions of the PTHrP sequence responsible for this nuclear targeting represent a classical bipartite nuclear localization signal. This report describes the activation of the cell cycle in association with nuclear localization of PTHrP in any cell type. These findings have important implications for the normal physiology of PTHrP in the many tissues which produce it, and suggest that gene delivery of PTHrP or modified variants may be useful in the management of atherosclerotic vascular disease.
Resumo:
Adipocyte complement-related protein (30 kDa) (Acrp30), a secreted protein of unknown function, is exclusively expressed in differentiated adipocytes; its mRNA is decreased in obese humans and mice. Here we describe novel pharmacological properties of the protease-generated globular head domain of Acrp30 (gAcrp30). Acute treatment of mice with gAcrp30 significantly decreased the elevated levels of plasma free fatty acids caused either by administration of a high fat test meal or by i.v. injection of Intralipid. This effect of gAcrp30 was caused, at least in part, by an acute increase in fatty acid oxidation by muscle. As a result, daily administration of a very low dose of gAcrp30 to mice consuming a high-fat/sucrose diet caused profound and sustainable weight reduction without affecting food intake. Thus, gAcrp30 is a novel pharmacological compound that controls energy homeostasis and exerts its effect primarily at the peripheral level.
Resumo:
Previous reports indicate that the expression and/or activity of the protein-tyrosine phosphatase (PTP) LAR are increased in insulin-responsive tissues of obese, insulin-resistant humans and rodents, but it is not known whether these alterations contribute to the pathogenesis of insulin resistance. To address this question, we generated transgenic mice that overexpress human LAR, specifically in muscle, to levels comparable to those reported in insulin-resistant humans. In LAR-transgenic mice, fasting plasma insulin was increased 2.5-fold compared with wild-type controls, whereas fasting glucose was normal. Whole-body glucose disposal and glucose uptake into muscle in vivo were reduced by 39–50%. Insulin injection resulted in normal tyrosyl phosphorylation of the insulin receptor and insulin receptor substrate 1 (IRS-1) in muscle of transgenic mice. However, phosphorylation of IRS-2 was reduced by 62%, PI3′ kinase activity associated with phosphotyrosine, IRS-1, or IRS-2 was reduced by 34–57%, and association of p85α with both IRS proteins was reduced by 39–52%. Thus, overexpression of LAR in muscle causes whole-body insulin resistance, most likely due to dephosphorylation of specific regulatory phosphotyrosines on IRS proteins. Our data suggest that increased expression and/or activity of LAR or related PTPs in insulin target tissues of obese humans may contribute to the pathogenesis of insulin resistance.
Resumo:
Low-density lipoprotein receptor-related protein (LRP) mediates internalization of urokinase:plasminogen activator inhibitor complexes (uPA:PAI-1) and the urokinase receptor (uPAR). Here we investigated whether direct interaction between uPAR, a glycosyl-phosphatidylinositol–anchored protein, and LRP, a transmembrane receptor, is required for clearance of uPA:PAI-1, regeneration of unoccupied uPAR, activation of plasminogen, and the ability of HT1080 cells to invade extracellular matrix. We found that in the absence of uPA:PAI-1, uPAR is randomly distributed along the plasma membrane, whereas uPA:PAI-1 promotes formation of uPAR-LRP complexes and initiates redistribution of occupied uPAR to clathrin-coated pits. uPAR-LRP complexes are endocytosed via clathrin-coated vesicles and traffic together to early endosomes (EE) because they can be coimmunoprecipitated from immunoisolated EE, and internalization is blocked by depletion of intracellular K+. Direct binding of domain 3 (D3) of uPAR to LRP is required for clearance of uPA-PAI-1–occupied uPAR because internalization is blocked by incubation with recombinant D3. Moreover, uPA-dependent plasmin generation and the ability of HT1080 cells to migrate through Matrigel-coated invasion chambers are also inhibited in the presence of D3. These results demonstrate that GPI-anchored uPAR is endocytosed by piggybacking on LRP and that direct binding of occupied uPAR to LRP is essential for internalization of occupied uPAR, regeneration of unoccupied uPAR, plasmin generation, and invasion and migration through extracellular matrix.
Resumo:
Intracellular transport is essential for morphogenesis and functioning of the cell. The kinesin superfamily proteins (KIFs) have been shown to transport membranous organelles and protein complexes in a microtubule- and ATP-dependent manner. More than 30 KIFs have been reported in mice. However, the nomenclature of KIFs has not been clearly established, resulting in various designations and redundant names for a single KIF. Here, we report the identification and classification of all KIFs in mouse and human genome transcripts. Previously unidentified murine KIFs were found by a PCR-based search. The identification of all KIFs was confirmed by a database search of the total human genome. As a result, there are a total of 45 KIFs. The nomenclature of all KIFs is presented. To understand the function of KIFs in intracellular transport in a single tissue, we focused on the brain. The expression of 38 KIFs was detected in brain tissue by Northern blotting or PCR using cDNA. The brain, mainly composed of highly differentiated and polarized cells such as neurons and glia, requires a highly complex intracellular transport system as indicated by the increased number of KIFs for their sophisticated functions. It is becoming increasingly clear that the cell uses a number of KIFs and tightly controls the direction, destination, and velocity of transportation of various important functional molecules, including mRNA. This report will set the foundation of KIF and intracellular transport research.
Resumo:
p107 is a retinoblastoma protein-related phosphoprotein that, when overproduced, displays a growth inhibitory function. It interacts with and modulates the activity of the transcription factor, E2F-4. In addition, p107 physically associates with cyclin E-CDK2 and cyclin A-CDK2 complexes in late G1 and at G1/S, respectively, an indication that cyclin-dependent kinase complexes may regulate, contribute to, and/or benefit from p107 function during the cell cycle. Our results show that p107 phosphorylation begins in mid G1 and proceeds through late G1 and S and that cyclin D-associated kinase(s) contributes to this process. In addition, E2F-4 binds selectively to hypophosphorylated p107, and G1 cyclin-dependent p107 phosphorylation leads to the dissociation of p107-E2F-4 complexes as well as inactivation of p107 G1 blocking function.
Resumo:
Angiogenin-related protein (Angrp), the putative product of a recently discovered mouse gene, shares 78% sequence identity with mouse angiogenin (Ang). In the present study, the relationship of Angrp to Ang has been investigated by producing both proteins in bacteria and comparing their functional properties. We find that mouse Ang is potently angiogenic, but Angrp is not, even when assayed at relatively high doses. A deficiency in catalytic capacity, which is essential for the biological activity of Ang, does not appear to underlie Angrp's lack of angiogenicity. In fact, Angrp has somewhat greater ribonucleolytic activity toward tRNA and dinucleotide substrates than does Ang. Instead, an inability to bind cellular receptors is implicated since Angrp does not inhibit Ang-induced angiogenesis. Poor conservation of the Ang receptor recognition sequence 58-69 in Angrp most likely contributes to this defect. However, other substitutions must also influence receptor binding since an Angrp quadruple mutant that is identical to Ang in this segment still lacks both angiogenic activity and the capacity to inhibit Ang. The functional differences between Ang and Angrp, together with evidence presented herein that Angrp is regulated differently than Ang, suggest that the roles of the two proteins in vivo may be quite distinct.