57 resultados para KDV


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In analogy with the Liouville case we study the sl3 Toda theory on the lattice and define the relevant quadratic algebra and out of it we recover the discrete W3 algebra. We define an integrable system with respect to the latter and establish the relation with the Toda lattice hierarchy. We compute the relevant continuum limits. Finally we find the quantum version of the quadratic algebra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solutions of a large class of hierarchies of zero-curvature equations that includes Toda- and KdV-type hierarchies are investigated. All these hierarchies are constructed from affine (twisted or untwisted) Kac-Moody algebras g. Their common feature is that they have some special vacuum solutions corresponding to Lax operators lying in some Abelian (up to the central term) subalgebra of g; in some interesting cases such subalgebras are of the Heisenberg type. Using the dressing transformation method, the solutions in the orbit of those vacuum solutions are constructed in a uniform way. Then, the generalized tau-functions for those hierarchies are defined as an alternative set of variables corresponding to certain matrix elements evaluated in the integrable highest-weight representations of g. Such definition of tau-functions applies for any level of the representation, and it is independent of its realization (vertex operator or not). The particular important cases of generalized mKdV and KdV hierarchies as well as the Abelian and non-Abelian affine Toda theories are discussed in detail. © 1997 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We apply a multiple-time version of the reductive perturbation method to study long waves as governed by the shallow water wave model equation. As a consequence of the requirement of a secularity-free perturbation theory, we show that the well known N-soliton dynamics of the shallow water wave equation, in the particular case of α = 2β, can be reduced to the N-soliton solution that satisfies simultaneously all equations of the Korteweg-de Vries hierarchy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we consider the propagation of water waves in a long-wave asymptotic regime, when the bottom topography is periodic on a short length scale. We perform a multiscale asymptotic analysis of the full potential theory model and of a family of reduced Boussinesq systems parametrized by a free parameter that is the depth at which the velocity is evaluated. We obtain explicit expressions for the coefficients of the resulting effective Korteweg-de Vries (KdV) equations. We show that it is possible to choose the free parameter of the reduced model so as to match the KdV limits of the full and reduced models. Hence the reduced model is optimal regarding the embedded linear weakly dispersive and weakly nonlinear characteristics of the underlying physical problem, which has a microstructure. We also discuss the impact of the rough bottom on the effective wave propagation. In particular, nonlinearity is enhanced and we can distinguish two regimes depending on the period of the bottom where the dispersion is either enhanced or reduced compared to the flat bottom case. © 2007 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a solution of three dimensional New Massive Gravity with a negative cosmological constant and use the AdS/CTF correspondence to inquire about the equivalent two dimensional model at the boundary. We conclude that there should be a close relation of the theory with the Korteweg-de Vries equation. (C) 2012 Elsevier B.V..All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dubrovin type equations for the N -gap solution of a completely integrable system associated with a polynomial pencil is constructed and then integrated to a system of functional equations. The approach used to derive those results is a generalization of the familiar process of finding the 1-soliton (1-gap) solution by integrating the ODE obtained from the soliton equation via the substitution u = u(x + λt).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This book deals with equations of mathematical physics as the different modifications of the KdV equation, the Camassa-Holm type equations, several modifications of Burger's equation, the Hunter-Saxton equation, conservation laws equations and others. The equations originate from physics but are proposed here for their investigation via purely mathematical methods in the frames of university courses. More precisely, we propose classification theorems for the traveling wave solutions for a sufficiently large class of third order nonlinear PDE when the corresponding profiles develop different kind of singularities (cusps, peaks), existence and uniqueness results, etc. The orbital stability of the periodic solutions of traveling type for mKdV equations are also studied. Of great interest too is the interaction of peakon type solutions of the Camassa-Holm equation and the solvability of the classical and generalized Cauchy problem for the Hunter-Saxton equation. The Riemann problem for special systems of conservation laws and the corresponding -shocks are also considered. As it concerns numerical methods we apply the CNN approach. The book is addressed to a broader audience including graduate students, Ph.D. students, mathematicians, physicist, engineers and specialists in the domain of PDE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 35L05, 34L15, 35D05, 35Q53

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a conservation law perturbed by a linear diffusion and a general form of non-positive dispersion. We prove the convergence of the corresponding solution to the entropy weak solution of the hyperbolic conservation law.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a class of nonlinear dissipative-dispersive perturbations of the scalar conservation law @tu + div f (u) = 01 and we study the convergence of the approximated solutions to its entropy solution. In particular, we obtain conditions under which the balance between dissipation and dispersion gives rise to the convergence (by DiPerna's measure-valued solution technique).