989 resultados para K-connectivity
Resumo:
This article reports an experiment in world city network analysis focusing on city-dyads. Results are derived from an unusual principal components analysis of 27,966 city-dyads across 5 advanced producer service sectors. A 2-component solution is found that identifies different forms of globalization: extensive and intensive. The latter is characterized by very high component scores and describes the more important city-dyads focused upon London-New York (NYLON). The extensive globalization component heavily features London and New York but with each linked to less important cities. U.S. cities score relatively high on the intensive globalization component and we use this finding to explain the low connectivities of U.S. cities in previous studies of the world city network. The two components are tentatively interpreted in world-systems terms: intensive globalization is the process of core-making through city-dyads; extensive globalization is the process of linking core with non-core through city-dyads.
Resumo:
The frontal pole corresponds to Brodmann area (BA) 10, the largest single architectonic area in the human frontal lobe. Generally, BA10 is thought to contain two or three subregions that subserve broad functions such as multitasking, social cognition, attention, and episodic memory. However, there is a substantial debate about the functional and structural heterogeneity of this large frontal region. Previous connectivity-based parcellation studies have identified two or three subregions in the human frontal pole. Here, we used diffusion tensor imaging to assess structural connectivity of BA10 in 35 healthy subjects and delineated subregions based on this connectivity. This allowed us to determine the correspondence of structurally based subregions with the scheme previously defined functionally. Three subregions could be defined in each subject. However, these three subregions were not spatially consistent between subjects. Therefore, we accepted a solution with two subregions that encompassed the lateral and medial frontal pole. We then examined resting-state functional connectivity of the two subregions and found significant differences between their connectivities. The medial cluster was connected to nodes of the default-mode network, which is implicated in internally focused, self-related thought, and social cognition. The lateral cluster was connected to nodes of the executive control network, associated with directed attention and working memory. These findings support the concept that there are two major anatomical subregions of the frontal pole related to differences in functional connectivity.
Resumo:
Cerebral disconnectivity due to white matter alterations in patients with chronic schizophrenia assessed by diffusion tensor imaging has been reported previously. The aim of this preliminary study is to investigate whether cerebral disconnectivity can be detected as early as the first episode of schizophrenia. Intervoxel coherence values were compared by voxel-based t test in 12 patients with first episode schizophrenia and 12 age- and gender-matched control groups. We detected 14 circumscribed significant clusters (P < 0.02), 3 of them with higher, and 11 of them with lower IC values for patients with schizophrenia than for healthy control groups. We interpret these white matter alterations in different regions to be disconnected fiber tracts already present early in schizophrenic disease progression.
Resumo:
Agricultural intensification has caused a decline in structural elements in European farmland, where natural habitats are increasingly fragmented. The loss of habitat structures has a detrimental effect on biodiversity and affects bat species that depend on vegetation structures for foraging and commuting. We investigated the impact of connectivity and configuration of structural landscape elements on flight activity, species richness and diversity of insectivorous bats and distinguished three bat guilds according to species-specific bioacoustic characteristics. We tested whether bats with shorter-range echolocation were more sensitive to habitat fragmentation than bats with longer-range echolocation. We expected to find different connectivity thresholds for the three guilds and hypothesized that bats prefer linear over patchy landscape elements. Bat activity was quantified using repeated acoustic monitoring in 225 locations at 15 study plots distributed across the Swiss Central Plateau, where connectivity and the shape of landscape elements were determined by spatial analysis (GIS). Spectrograms of bat calls were assigned to species with the software batit by means of image recognition and statistical classification algorithms. Bat activity was significantly higher around landscape elements compared to open control areas. Short- and long-range echolocating bats were more active in well-connected landscapes, but optimal connectivity levels differed between the guilds. Species richness increased significantly with connectivity, while species diversity did not (Shannon's diversity index). Total bat activity was unaffected by the shape of landscape elements. Synthesis and applications. This study highlights the importance of connectivity in farmland landscapes for bats, with shorter-range echolocating bats being particularly sensitive to habitat fragmentation. More structurally diverse landscape elements are likely to reduce population declines of bats and could improve conditions for other declining species, including birds. Activity was highest around optimal values of connectivity, which must be evaluated for the different guilds and spatially targeted for a region's habitat configuration. In a multi-species approach, we recommend the reintroduction of structural elements to increase habitat heterogeneity should become part of agri-environment schemes.
Resumo:
In terms of changing flow and sediment regimes of rivers, dams are often regarded as the most dominant form of human impact on fluvial systems. Dams can decrease the flux of water and sediments leading to channel changes such as upstream aggradation and downstream degradation. The opposite effects occur when dams are removed. Channel degradation often requires further intervention in terms of river bed and bank protection works. The situation evolves more complex in river systems that are impacted by a series of dams due to feedback processes between the different system compartments. A number of studies have recently investigated geomorphic systems using connectivity approaches to improve the understanding of geomorphic system response to change. This paper presents a case study investigating the impact of dam construction, dam removal and dam-related river bed and bank protection measures on the sediment connectivity and channel morphology of the Fugnitz and the Kaja Rivers using a combination of DEM analyses, field surveys and landscape evolution modelling. For both river systems the results revealed low sediment connectivity accompanied by a fine river bed sediment facies in river sections upstream of active dams and of removed dams with protection measures. Contrarily, high sediment connectivity which was accompanied by a coarse river bed sediment facies was observed in river sections either located downstream of active dams or of removed dams with upstream protection. In terms of channel changes, significant channel degradation was examined at locations downstream of active dams and of removed dams. Channel bed and bank protection measures prevent erosion and channel slope recovery after dam removal. Landscape evolution modeling revealed a complex geomorphic response to dam construction and dam removal as sediment output rates and therefore geomorphic processes have been shown to act in a non-linear manner. These insights are deemed to have major implications for river management and conservation, as quality and state of riverine habitats are determined by channel morphology and river bed sediment composition.
Resumo:
Cytochrome c oxidase is a membrane-bound enzyme that catalyzes the four-electron reduction of oxygen to water. This highly exergonic reaction drives proton pumping across the membrane. One of the key questions associated with the function of cytochrome c oxidase is how the transfer of electrons and protons is coupled and how proton transfer is controlled by the enzyme. In this study we focus on the function of one of the proton transfer pathways of the R. sphaeroides enzyme, the so-called K-proton transfer pathway (containing a highly conserved Lys(I-362) residue), leading from the protein surface to the catalytic site. We have investigated the kinetics of the reaction of the reduced enzyme with oxygen in mutants of the enzyme in which a residue [Ser(I-299)] near the entry point of the pathway was modified with the use of site-directed mutagenesis. The results show that during the initial steps of oxygen reduction, electron transfer to the catalytic site (to form the “peroxy” state, Pr) requires charge compensation through the proton pathway, but no proton uptake from the bulk solution. The charge compensation is proposed to involve a movement of the K(I-362) side chain toward the binuclear center. Thus, in contrast to what has been assumed previously, the results indicate that the K-pathway is used during oxygen reduction and that K(I-362) is charged at pH ≈ 7.5. The movement of the Lys is proposed to regulate proton transfer by “shutting off” the protonic connectivity through the K-pathway after initiation of the O2 reduction chemistry. This “shutoff” prevents a short-circuit of the proton-pumping machinery of the enzyme during the subsequent reaction steps.
Resumo:
Understanding flow path connectivity within a geothermal reservoir is a critical component for efficiently producing sustained flow rates of hot fluids from the subsurface. I present a new approach for characterizing subsurface fracture connectivity that combines petrographic and cold cathodoluminescence (CL) microscopy with stable isotope analysis (δ18O and δ13C) and clumped isotope (Δ47) thermometry of fracture-filling calcite cements from a geothermal reservoir in northern Nevada. Calcite cement samples were derived from both drill cuttings and core samples taken at various depths from wells within the geothermal field. CL microscopy of some fracture filling cements shows banding parallel to the fracture walls as well as brecciation, indicating that the cements are related to fracture opening and fault slip. Variations in trace element composition indicated by the luminescence patterns reflect variations in the composition and source of fluids moving through the fractures as they opened episodically. Calcite δ13C and δ18O results also show significant variation among the sampled cements, reflecting multiple generations of fluids and fracture connectivity. Clumped isotope analyses performed on a subset of the cements analyzed for conventional δ18O and δ13C mostly show calcite growth temperatures around 150°C—above the current ambient rock temperature, which indicates a common temperature trend for the geothermal reservoir. However, calcite cements sampled along faults located within the well field showed both cold (18.7°C) and hot (226.1°C) temperatures. The anomalously cool temperature found along the fault, using estimates from clumped isotope thermometry, suggests a possible connection to surface waters for the geothermal source fluids for this system. This information may indicate that some of the faults within the well field are transporting meteoric water from the surface to be heated at depth, which then is circulated through a complex network of fractures and other faults.
Resumo:
We investigate the performance of parity check codes using the mapping onto spin glasses proposed by Sourlas. We study codes where each parity check comprises products of K bits selected from the original digital message with exactly C parity checks per message bit. We show, using the replica method, that these codes saturate Shannon's coding bound for K?8 when the code rate K/C is finite. We then examine the finite temperature case to asses the use of simulated annealing methods for decoding, study the performance of the finite K case and extend the analysis to accommodate different types of noisy channels. The analogy between statistical physics methods and decoding by belief propagation is also discussed.
Resumo:
Background - Amygdala-orbitofrontal cortical (OFC) functional connectivity (FC) to emotional stimuli and relationships with white matter remain little examined in bipolar disorder individuals (BD). Methods - Thirty-one BD (type I; n = 17 remitted; n = 14 depressed) and 24 age- and gender-ratio-matched healthy individuals (HC) viewed neutral, mild, and intense happy or sad emotional faces in two experiments. The FC was computed as linear and nonlinear dependence measures between amygdala and OFC time series. Effects of group, laterality, and emotion intensity upon amygdala-OFC FC and amygdala-OFC FC white matter fractional anisotropy (FA) relationships were examined. Results - The BD versus HC showed significantly greater right amygdala-OFC FC (p = .001) in the sad experiment and significantly reduced bilateral amygdala-OFC FC (p = .007) in the happy experiment. Depressed but not remitted female BD versus female HC showed significantly greater left amygdala-OFC FC (p = .001) to all faces in the sad experiment and reduced bilateral amygdala-OFC FC to intense happy faces (p = .01). There was a significant nonlinear relationship (p = .001) between left amygdala-OFC FC to sad faces and FA in HC. In BD, antidepressants were associated with significantly reduced left amygdala-OFC FC to mild sad faces (p = .001). Conclusions - In BD, abnormally elevated right amygdala-OFC FC to sad stimuli might represent a trait vulnerability for depression, whereas abnormally elevated left amygdala-OFC FC to sad stimuli and abnormally reduced amygdala-OFC FC to intense happy stimuli might represent a depression state marker. Abnormal FC measures might normalize with antidepressant medications in BD. Nonlinear amygdala-OFC FC–FA relationships in BD and HC require further study.