997 resultados para Juvenile hormone


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background In honeybees, differential feeding of female larvae promotes the occurrence of two different phenotypes, a queen and a worker, from identical genotypes, through incremental alterations, which affect general growth, and character state alterations that result in the presence or absence of specific structures. Although previous studies revealed a link between incremental alterations and differential expression of physiometabolic genes, the molecular changes accompanying character state alterations remain unknown. Results By using cDNA microarray analyses of >6,000 Apis mellifera ESTs, we found 240 differentially expressed genes (DEGs) between developing queens and workers. Many genes recorded as up-regulated in prospective workers appear to be unique to A. mellifera, suggesting that the workers' developmental pathway involves the participation of novel genes. Workers up-regulate more developmental genes than queens, whereas queens up-regulate a greater proportion of physiometabolic genes, including genes coding for metabolic enzymes and genes whose products are known to regulate the rate of mass-transforming processes and the general growth of the organism (e.g., tor). Many DEGs are likely to be involved in processes favoring the development of caste-biased structures, like brain, legs and ovaries, as well as genes that code for cytoskeleton constituents. Treatment of developing worker larvae with juvenile hormone (JH) revealed 52 JH responsive genes, specifically during the critical period of caste development. Using Gibbs sampling and Expectation Maximization algorithms, we discovered eight overrepresented cis-elements from four gene groups. Graph theory and complex networks concepts were adopted to attain powerful graphical representations of the interrelation between cis-elements and genes and objectively quantify the degree of relationship between these entities. Conclusion We suggest that clusters of functionally related DEGs are co-regulated during caste development in honeybees. This network of interactions is activated by nutrition-driven stimuli in early larval stages. Our data are consistent with the hypothesis that JH is a key component of the developmental determination of queen-like characters. Finally, we propose a conceptual model of caste differentiation in A. mellifera based on gene-regulatory networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alkylphenols are pollutants that are present in marine sediments and fishes. In earlier work it has been discovered that alkylphenols are present in the Homarus americanus, or the American lobster. Research suggests that alkylphenols could behave as endocrine disruptors as they have been found to affect juvenile hormone activity. It has been hypothesized that lobsters may be able to rid themselves of alkylphenol contamination through secreting these compounds into the environment or sequestering them in their tissues. In this study, I address the question of how lobsters may rid themselves of alkylphenols by analyzing hemolymph, muscle, gill, and shell samples and by looking for the presence of alkylphenols in natural and artificially injected lobsters. A total of thirty lobsters were analyzed. In my first study I found alkylphenols only in the gill tissue samples of natural lobsters after alkylphenols were initially found in the hemolymph, and found none in the muscle and shell samples. The types of alkylphenols found in the gills were often different than the alkylphenols found in the hemolymph. The gills are known as a site for exchange for the lobster. The lobster may not only be excreting alkylphenols from its gill surfaces but these findings suggest that the lobster may also be acquiring alkylphenols in the environment from these surfaces. It is possible that the lobsters may have ingested additional contaminants after the hemolymph samples were taken and before the gill samples were taken. As for the shell and muscle samples, it is possible that by our method the levels were too low to detect since we have a threshold of detection of 1ng/mL. It is also a conclusion that alkylphenols were not sequestered in these tissues. In the second study, an expanded set of muscles samples from natural lobsters were tested as well as additional lobsters that were artificially injected with one of our alkylphenol compounds of interest, compound three. We found that lobsters injected with peak three showed significantly higher alkylphenol concentrations in all tissues, most notably the gill samples. The non-injected lobsters that died shortly after being in the laboratory, showed mostly peak three but their overall values were much less than those of the injected lobsters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

(E)-α-Bisabolene synthase is one of two wound-inducible sesquiterpene synthases of grand fir (Abies grandis), and the olefin product of this cyclization reaction is considered to be the precursor in Abies species of todomatuic acid, juvabione, and related insect juvenile hormone mimics. A cDNA encoding (E)-α-bisabolene synthase was isolated from a wound-induced grand fir stem library by a PCR-based strategy and was functionally expressed in Escherichia coli and shown to produce (E)-α-bisabolene as the sole product from farnesyl diphosphate. The expressed synthase has a deduced size of 93.8 kDa and a pI of 5.03, exhibits other properties typical of sesquiterpene synthases, and resembles in sequence other terpenoid synthases with the exception of a large amino-terminal insertion corresponding to Pro81–Val296. Biosynthetically prepared (E)-α-[3H]bisabolene was converted to todomatuic acid in induced grand fir cells, and the time course of appearance of bisabolene synthase mRNA was shown by Northern hybridization to lag behind that of mRNAs responsible for production of induced oleoresin monoterpenes. These results suggest that induced (E)-α-bisabolene biosynthesis constitutes part of a defense response targeted to insect herbivores, and possibly fungal pathogens, that is distinct from induced oleoresin monoterpene production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although “polymorphic castes” in social insects are well known as one of the most important phenomena of polyphenism, few studies of caste-specific gene expressions have been performed in social insects. To identify genes specifically expressed in the soldier caste of the Japanese damp-wood termite Hodotermopsis japonica, we employed the differential-display method using oligo(dT) and arbitrary primers, compared mRNA from the heads of mature soldiers and pseudergates (worker caste), and identified a clone (PCR product) 329 bp in length termed SOL1. Northern blot analysis showed that the SOL1 mRNA is about 1.0 kb in length and is expressed specifically in mature soldiers, but not in pseudergates, even in the presoldier induction by juvenile hormone analogue, suggesting that the product is specific for terminally differentiated soldiers. By using the method of 5′- and 3′-rapid amplification of cDNA ends, we isolated the full length of SOL1 cDNA, which contained an ORF with a putative signal peptide at the N terminus. The sequence showed no significant homology with any other known protein sequences. In situ hybridization analysis showed that SOL1 is expressed specifically in the mandibular glands. These results strongly suggest that the SOL1 gene encodes a secretory protein specifically synthesized in the mandibular glands of the soldiers. Histological observations revealed that the gland actually develops during the differentiation into the soldier caste.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genetic changes in insects that lead to insecticide resistance include point mutations and up-regulation/amplification of detoxification genes. Here, we report a third mechanism, resistance caused by an absence of gene product. Mutations of the Methoprene-tolerant (Met) gene of Drosophila melanogaster result in resistance to both methoprene, a juvenile hormone (JH) agonist insecticide, and JH. Previous results have demonstrated a mechanism of resistance involving an intracellular JH binding protein that has reduced ligand affinity in Met flies. We show that a γ-ray induced allele, Met27, completely lacks Met transcript during the insecticide-sensitive period in development. Although Met27 homozygotes have reduced oogenesis, they are viable, demonstrating that Met is not a vital gene. Most target-site resistance genes encode vital proteins and thus have few mutational changes that permit both resistance and viability. In contrast, resistance genes such as Met that encode nonvital insecticide target proteins can have a variety of mutational changes that result in an absence of functional gene product and thus should show higher rates of resistance evolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Temporal polyethism is a highly derived form of behavioral development displayed by social insects. Hormonal and genetic mechanisms regulating temporal polyethism in worker honey bees have been identified, but the evolution of these mechanisms is not well understood. We performed three experiments with male honey bees (drones) to investigate how mechanisms regulating temporal polyethism may have evolved because, relative to workers, drones display an intriguing combination of similarities and differences in behavioral development. We report that behavioral development in drones is regulated by mechanisms common to workers. In experiment 1, drones treated with the juvenile hormone (JH) analog methoprene started flying at significantly younger ages than did control drones, as is the case for workers. In experiment 2, there was an age-related increase in JH associated with the onset of drone flight, as in workers. In experiment 3, drones derived from workers with fast rates of behavioral development themselves started flying at younger ages than drones derived from workers with slower rates of behavioral development. These results suggest that endocrine and genetic mechanisms associated with temporal polyethism did not evolve strictly within the context of worker social behavior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report that methoprene and its derivatives can stimulate gene transcription in vertebrates by acting through the retinoic acid-responsive transcription factors, the retinoid X receptors (RXRs). Methoprene is an insect growth regulator in domestic and agricultural use as a pesticide. At least one metabolite of methoprene, methoprene acid, directly binds to RXR and is a transcriptional activator in both insect and mammalian cells. Unlike the endogenous RXR ligand, 9-cis-retinoic acid, this activity is RXR-specific; the methoprene derivatives do not activate the retinoic acid receptor pathway. Methoprene is a juvenile hormone analog that acts to retain juvenile characteristics during insect growth, preventing metamorphosis into an adult, and it has been shown to have ovicidal properties in some insects. Thus, a pesticide that mimics the action of juvenile hormone in insects can also activate a mammalian retinoid-responsive pathway. This finding provides a basis through which the potential bioactivity of substances exposed to the environment may be reexamined and points the way for discovery of new receptor ligands in both insects and vertebrates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Juvenile hormone (JH) is the central hormonal regulator of life-history trade-offs in many insects. In Aedes aegypti, JH regulates reproductive development after emergence. Little is known about JH's physiological functions after reproductive development is complete or JH's role in mediating life-history trade-offs. By examining the effect of hormones, nutrition, and mating on ovarian physiology during the previtellogenic resting stage, critical roles were determined for these factors in mediating life-history trade-offs and reproductive output. The extent of follicular resorption during the previtellogenic resting stage is dependent on nutritional quality. Feeding females a low quality diet during the resting stage causes the rate of follicular resorption to increase and reproductive output to decrease. Conversely, feeding females a high quality diet causes resorption to remain low. The extent of resorption can be increased by separating the ovaries from a source of JH or decreased by exogenous application of methoprene. Active caspases were localized to resorbing follicles indicating that an apoptosis-like mechanism participates in follicular resorption. Accumulations of neutral lipids and the accumulation of mRNA's integral to endocytosis and oocyte development such as the vitellogenin receptor (AaVgR), lipophorin receptor (AaLpRov), heavy-chain clathrin (AaCHC), and ribosomal protein L32 (rpL32) were also examined under various nutritional and hormonal conditions. The abundance of mRNA's and neutral lipid content increased within the previtellogenic ovary as mosquitoes were offered increasing sucrose concentrations or were treated with methoprene. These same nutritional and hormonal manipulations altered the extent of resorption after a blood meal indicating that the fate of follicles and overall fecundity depends, in part, on nutritional and hormonal status during the previtellogenic resting stage. Mating female mosquitoes also altered follicle quality and resorption similarly to nutrition or hormonal application and demonstrates that male accessory gland substances such as JH III passed to the female during copulation have a strong effect on ovarian physiology during the previtellogenic resting stage and can influence reproductive output. Taken together these results demonstrate that the previtellogenic resting stage is not an inactive period but is instead a period marked by extensive life-history and fitness trade-offs in response to nutrition, hormones and mating stimuli.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Cell-cell interactions are a basic principle for the organization of tissues and organs allowing them to perform integrated functions and to organize themselves spatially and temporally. Peptidic molecules secreted by neurons and epithelial cells play fundamental roles in cell-cell interactions, acting as local neuromodulators, neurohormones, as well as endocrine and paracrine messengers. Allatotropin (AT) is a neuropeptide originally described as a regulator of Juvenile Hormone synthesis, which plays multiple neural, endocrine and myoactive roles in insects and other organisms. Methods A combination of immunohistochemistry using AT-antibodies and AT-Qdot nanocrystal conjugates was used to identify immunoreactive nerve cells containing the peptide and epithelial-muscular cells targeted by AT in Hydra plagiodesmica. Physiological assays using AT and AT- antibodies revealed that while AT stimulated the extrusion of the hypostome in a dose-response fashion in starved hydroids, the activity of hypostome in hydroids challenged with food was blocked by treatments with different doses of AT-antibodies. Conclusions AT antibodies immunolabeled nerve cells in the stalk, pedal disc, tentacles and hypostome. AT-Qdot conjugates recognized epithelial-muscular cell in the same tissues, suggesting the existence of anatomical and functional relationships between these two cell populations. Physiological assays indicated that the AT-like peptide is facilitating food ingestion. Significance Immunochemical, physiological and bioinformatics evidence advocates that AT is an ancestral neuropeptide involved in myoregulatory activities associated with meal ingestion and digestion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Juvenile hormone (JH) is crucial for the stimulation and progression of oogenesis from emergence to the previtellogenic resting stage in female Aedes aegypti mosquitoes. Juvenile hormone has been suggested to be among the many substances transferred form the male accessory glands to the female during copulation but no evidence for this has previously been provided. Quantification of JH III in the accessory glands of males and in the bursae copulatrix and spermathecae of mated females was performed using HPLC-FD. These amounts were measured in relation to the quality of adult sugar feeding in the male. The effect of this variable transfer was measured on two fecundity markers that occur during the previtellogenic stage of oogenesis, specifically follicular resorption and ovarian lipids. Male mosquitoes provided with 20% sucrose contained ~ 60% greater amount of JH in the accessory glands and transferred 4 fmol more JH during copulation than males provided with 3% sucrose. These differences resulted in a nearly 40% reduction in follicular resorption and an approximate 3-fold increase in lipid content in the ovaries of mated females during the previtellogenic stage. These results suggest that the contribution of JH from the male is dependent on the quality of nutrition obtained during adult sugar feeding. Female fecundity is likely responsive to these variable previtellogenic effects, possibly resulting in a difference in the number of eggs laid. Improvements in female reproductive output may have wider implications in the transmission of diseases attributed to this important arbovirus vector.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Semiconductor nanocrystals, also known as quantum dots (QDs), have been used in studies involving mice and human tissues, but never before in research on insects. We used QDs to study the distribution of two neuropeptides in the Aedes aegypti mosquito, the vector of both dengue and yellow fever. These neuropeptides play a significant role in the production of juvenile hormone, a hormone that controls biting behavior, metamorphosis, and reproduction throughout the life of the mosquito. The two neuropeptides allatostatin-C (AS-C) and allatotropin (AT) function as inhibitory (AS-C) and stimulatory (AT) regulators of juvenile hormone synthesis in the corpus allatum gland. In other insects, they also affect heart rate, gut movement, and nutrient uptake. Conjugating these neuropeptides to quantum dots via a streptavidinlbiotin link, we were able to expose the mosquito corpus allatum and abdomen to allatostatin-C and allatotropin and then to visualize their distribution under UV light using confocal and compound light microscopy. Histological sections of the whole mosquito, incubations of tissues with conjugates (in vitro), and microinjections of conjugates into the mosquito (in vivo) were performed. The results showed that quantum dots can be used to detect neuropeptide distribution in the mosquito. The more we understand about these neuropeptides and juvenile hormone, the more we can contribute to stopping the spread of infectious diseases, such as dengue and yellow fever.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Growth hormone (GH) effectively promotes seawater (SW) adaptation in salmonids, but little is known of its effect in tilapias. Experiments were performed to investigate the effects of recombinant eel GH (reGH) on osmoregulatory actions and ultrastructural features of gill chloride cells in juvenile tilapia, Oreochromis niloticus. Tilapia showed a markedly improved SW survival, when directly transferred from freshwater (FW) to 62.5% SW 24h after a single reGH injection (0.25 or 2.5 mu g g(-1)) or 3 reGH injections (0.25 mu g g(-1) every other day). Plasma Na+ and Mg2+ levels were significantly reduced by reGH (0.25 and 2.5 mu g g(-1)) compared with saline injections; Ca2+ concentrations were reduced significantly by high dose of reGH (2.5 mu g g(-1)) after SW transfer. However, fish failed to survive more than 24h when directly transferred to 70 % SW, although the fish treated with reGH could survive longer than the controls. When examined by electron microscopy, the chloride cells were identified as mitochondrion-rich and an extensive tubular system was induced by GH treatment. The results of the present study suggest that, similar to its effect on salmonids, GH also exerts acute osmoregulatory actions and enhances SW adaptation in juvenile tilapia. GH also stimulates the differentiation of chloride cells toward SW adaptation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteoporosis is a skeletal disorder characterized by compromised bone strength that predisposes to increased fracture risk. Childhood and adolescence are critical periods for bone mass gain. Peak bone mass is mostly acquired by the age of 18 years and is an important determinant of adult bone health and lifetime risk for fractures. Medications, especially glucocorticoids (GCs), chronic inflammation, decreased physical activity, hormonal deficiencies, delayed puberty, and poor nutrition may predispose children and adolescents with a chronic disease to impaired bone health. In this work, we studied overall bone health, the incidence and prevalence of fractures in children and adolescents who were treated for juvenile idiopathic arthritis (JIA) or had undergone solid organ transplantation. The first study cohort included 62 patients diagnosed with JIA and treated with GCs. The epidemiology of fractures after transplantation was investigated in 196 patients and a more detailed analysis of bone health determinants was performed on 40 liver (LTx) and 106 renal (RTx) transplantation patients. Bone mineral density (BMD) and vertebral morphology were assessed by dual-energy x-ray absorptiometry. Standard radiographs were obtained to detect vertebral fractures and to determine bone age; BMD values were adjusted for skeletal maturity. Our study showed that median BMD values were subnormal in all patient cohorts. The values were highest in patients with JIA and lowest in patients with LTx. Age at transplantation influenced BMD values in LTx but not RTx patients; BMD values were higher in patients who had LTx before the age of two years. BMD was lowest during the immediate posttransplantation years and increased subnormally during puberty. Delayed skeletal maturation was common in all patient groups. The prevalence of vertebral fractures ranged from 10% to 19% in the cohorts. Most of the fractures were asymptomatic and diagnosed only at screening. Vertebral fractures were most common in LTx patients. Vitamin D deficiency was common in all patient groups, and only 3% of patients with JIA and 25% of transplantation patients were considered to have adequate serum vitamin D levels. The total cumulative weight-adjusted dose of GC was not associated with BMD values in JIA or LTx patients. The combination of female gender and age over 15 years, parathyroid hormone concentration over 100 ng/L, and cumulative weight-adjusted methylprednisolone dose over 150 mg/kg during the three preceding years were found to be important predictors for low lumbar spine BMD in RTx patients. Based on the high prevalence of osteoporosis in the study cohorts more efforts should be put to prevention and early diagnosis of osteoporosis in these pediatric patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Food consumption, number of movements and feeding hierarchy of juvenile transgenic common carp Cyprinus carpio and their size-matched non-transgenic conspecifics were measured under conditions of limited food supply. Transgenic fish exhibited 73 center dot 3% more movements as well as a higher feeding order, and consumed 1 center dot 86 times as many food pellets as their non-transgenic counterparts. After the 10 day experiment, transgenic C. carpio had still not realized their higher growth potential, which may be partly explained by the higher frequency of movements of transgenics and the 'sneaky' feeding strategy used by the non-transgenics. The results indicate that these transgenic fish possess an elevated ability to compete for limited food resources, which could be advantageous after an escape into the wild. It may be that other factors in the natural environment (i.e. predation risk and food distribution), however, would offset this advantage. Thus, these results need to be assessed with caution.