985 resultados para Jun Nh2-terminal Kinase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of signaling via the JNK (c-Jun NH2-terminal kinase)/stress-activated protein kinase cascade to stimulate or inhibit DNA synthesis in primary cultures of adult rat hepatocytes was examined. Treatment of hepatocytes with media containing hyperosmotic glucose (75 mM final), tumor necrosis factor α (TNFα, 1 ng/ml final), and hepatocyte growth factor (HGF, 1 ng/ml final) caused activation of JNK1. Glucose, TNFα, or HGF treatments increased phosphorylation of c-Jun at serine 63 in the transactivation domain and stimulated hepatocyte DNA synthesis. Infection of hepatocytes with poly-l-lysine–coated adenoviruses coupled to constructs to express either dominant negatives Ras N17, Rac1 N17, Cdc42 N17, SEK1−, or JNK1− blunted the abilities of glucose, TNFα, or HGF to increase JNK1 activity, to increase phosphorylation of c-Jun at serine 63, and to stimulate DNA synthesis. Furthermore, infection of hepatocytes by a recombinant adenovirus expressing a dominant-negative c-Jun mutant (TAM67) also blunted the abilities of glucose, TNFα, and HGF to stimulate DNA synthesis. These data demonstrate that multiple agonists stimulate DNA synthesis in primary cultures of hepatocytes via a Ras/Rac1/Cdc42/SEK/JNK/c-Jun pathway. Glucose and HGF treatments reduced glycogen synthase kinase 3 (GSK3) activity and increased c-Jun DNA binding. Co-infection of hepatocytes with recombinant adenoviruses to express dominant- negative forms of PI3 kinase (p110α/p110γ) increased basal GSK3 activity, blocked the abilities of glucose and HGF treatments to inhibit GSK3 activity, and reduced basal c-Jun DNA binding. However, expression of dominant-negative PI3 kinase (p110α/p110γ) neither significantly blunted the abilities of glucose and HGF treatments to increase c-Jun DNA binding, nor inhibited the ability of these agonists to stimulate DNA synthesis. These data suggest that signaling by the JNK/stress-activated protein kinase cascade, rather than by the PI3 kinase cascade, plays the pivotal role in the ability of agonists to stimulate DNA synthesis in primary cultures of rat hepatocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure of A431 squamous and MDA-MB-231 mammary carcinoma cells to ionizing radiation has been associated with short transient increases in epidermal growth factor receptor (EGFR) tyrosine phosphorylation and activation of the mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK) pathways. Irradiation (2 Gy) of A431 and MDA-MB-231 cells caused immediate primary activations (0–10 min) of the EGFR and the MAPK and JNK pathways, which were surprisingly followed by later prolonged secondary activations (90–240 min). Primary and secondary activation of the EGFR was abolished by molecular inhibition of EGFR function. The primary and secondary activation of the MAPK pathway was abolished by molecular inhibition of either EGFR or Ras function. In contrast, molecular inhibition of EGFR function abolished the secondary but not the primary activation of the JNK pathway. Inhibition of tumor necrosis factor α receptor function by use of neutralizing monoclonal antibodies blunted primary activation of the JNK pathway. Addition of a neutralizing monoclonal antibody versus transforming growth factor α (TGFα) had no effect on the primary activation of either the EGFR or the MAPK and JNK pathways after irradiation but abolished the secondary activation of EGFR, MAPK, and JNK. Irradiation of cells increased pro-TGFα cleavage 120–180 min after exposure. In agreement with radiation-induced release of a soluble factor, activation of the EGFR and the MAPK and JNK pathways could be induced in nonirradiated cells by the transfer of media from irradiated cells 120 min after irradiation. The ability of the transferred media to cause MAPK and JNK activation was blocked when media were incubated with a neutralizing antibody to TGFα. Thus radiation causes primary and secondary activation of the EGFR and the MAPK and JNK pathways in autocrine-regulated carcinoma cells. Secondary activation of the EGFR and the MAPK and JNK pathways is dependent on radiation-induced cleavage and autocrine action of TGFα. Neutralization of TGFα function by an anti-TGFα antibody or inhibition of MAPK function by MEK1/2 inhibitors (PD98059 and U0126) radiosensitized A431 and MDA-MB-231 cells after irradiation in apoptosis, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), and clonogenic assays. These data demonstrate that disruption of the TGFα–EGFR–MAPK signaling module represents a strategy to decrease carcinoma cell growth and survival after irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity-induced endoplasmatic reticulum (ER) stress has been demonstrated to underlie the induction of obesity-induced JNK and NF-kappa B activation inflammatory responses, and generation of peripheral insulin resistance. On the other hand, exercise has been used as a crucial tool in obese and diabetic patients, and may reduce inflammatory pathway stimulation. However, the ability of exercise training to reverse endoplasmatic reticulum stress in adipose and hepatic tissue in obesity has not been investigated in the literature. Here, we demonstrate that exercise training ameliorates ER stress and insulin resistance in DIO-induced rats. Rats were fed with standard rodent chow (3,948 kcal kg(-1)) or high-fat diet (5,358 kcal kg(-1)) for 2 months. After that rats were submitted to swimming training (1 h per day, 5 days for week with 5% overload of the body weight for 8 weeks). Samples from epididymal fat and liver were obtained and western blot analysis was performed. Our results showed that swimming protocol reduces pro-inflammatory molecules (JNK, I kappa B and NF-kappa B) in adipose and hepatic tissues. In addition, exercise leads to reduction in ER stress, by reducing PERK and eIF2 alpha phosphorylation in these tissues. In parallel, an increase in insulin pathway signaling was observed, as confirmed by increases in IR, IRSs and Akt phosphorylation following exercise training in DIO rats. Thus, results suggest that exercise can reduce ER stress, improving insulin resistance in adipose and hepatic tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Systemic inflammation in sepsis is initiated by interactions between pathogen molecular motifs and specific host receptors, especially toll-like receptors (TLRs). Flagellin is the main flagellar protein of motile microorganisms and is the ligand of TLR5. The distribution of TLR5 and the actions of flagellin at the systemic level have not been established. Therefore, we determined TLR5 expression and the ability of flagellin to trigger prototypical innate immune responses and apoptosis in major organs from mice. Methods: Male Balb/C mice (n = 80) were injected intravenously with 1-5 mu g recombinant Salmonella flagellin. Plasma and organ samples were obtained after 0.5 to 6 h, for molecular investigations. The expression of TLR5, the activation state of nuclear factor kappa B (NF kappa B) and mitogen-activated protein kinases (MAPKs) [extracellular related kinase (ERK) and c-jun-NH2 terminal kinase (JNK)], the production of cytokines [tumor necrosis alpha (TNF alpha), interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), macrophage inhibitory protein-2 (MIP-2) and soluble triggering receptor expressed on myeloid cells (TREM-1)], and the apoptotic cleavage of caspase-3 and its substrate Poly(ADP-ribose) polymerase (PARP) were determined in lung, liver, gut and kidney at different time-points. The time-course of plasma cytokines was evaluated up to 6 h after flagellin. Results: TLR5 mRNA and protein were constitutively expressed in all organs. In these organs, flagellin elicited a robust activation of NF kappa B and MAPKs, and induced significant production of the different cytokines evaluated, with slight interorgan variations. Plasma TNF alpha, IL-6 and MIP-2 disclosed a transient peak, whereas IL-1 beta and soluble TREM-1 steadily increased over 6 h. Flagellin also triggered a marked cleavage of caspase-3 and PARP in the intestine, pointing to its ability to promote significant apoptosis in this organ. Conclusions: Bacterial flagellin elicits prototypical innate immune responses in mice, leading to the release of multiple pro-inflammatory cytokines in the lung, small intestine, liver and kidney, and also activates apoptotic signalling in the gut. Therefore, this bacterial protein may represent a critical mediator of systemic inflammation and intestinal barrier failure in sepsis due to flagellated micro-organisms

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Stroke or cerebrovascular accident, whose great majority is of ischemic nature, is the third leading cause of mortality and long lasting disability in industrialised countries. Resulting from the loss of blood supply to the brain depriving cerebral tissues of oxygen and glucose, it induces irreversible neuronal damages. Despite the large amount of research carried out into the causes and pathogenic features of cerebral ischemia the progress toward effective treatments has been poor. Apart the clot-busting drug tissue-type plasminogen activator (tPA) as effective therapy for acute stroke (reperfusion by thrombolysis) but limited to a low percentage of patients, there are currently no other approved medical treatments. The need for new therapy strategies is therefore imperative. Neuronal death in cerebral ischemia is among others due to excitotoxic mechanisms very early after stroke onset. One of the main involved molecular pathways leading to excitotoxic cell death is the c-Jun NH2-terminal kinase (JNK) pathway. Several studies have already shown the efficacy of a neuroprotective agent of a new type, a dextrogyre peptide synthesized in the retro inverso form (XG102, formerly D-JNKI1), which is protease-resistant and cell-penetrating and that selectively and strongly blocks the access of JNK to many of its targets. A powerful protection was observed with this compound in several models of ischemia (Borsello et al. 2003;Hirt et al. 2004). This chimeric compound, made up of a 10 amino acid TAT transporter sequence followed by a 20 amino acids JNK binding domain (JBD) sequence from JNK inhibitor protein (JIP) molecule, induced both a major reduction in lesion size and improved functional outcome. Moreover it presents a wide therapeutic window. XG-102 has proved its powerful efficacy in an occlusion model of middle cerebral artery in mice with intracérebroventricular (i.c.v.) injection but in order to be able to consider the development of this drug for human ischemic stroke it was therefore necessary to determine the feasibility of its systemic administration. The studies being the subject of this thesis made it possible to show a successful neuroprotection with XG-102 administered systemically after transient mouse middle cerebral artery occlusion (MCAo). Moreover our data. provided information about the feasibility to combine XG-102 with tPA without detrimental action on cell survival. By combining the benefits from a reperfusion treatment with the effects of a neuroprotective compound, it would represent the advantage of bringing better chances to protect the cerebral tissue. Résumé L'attaque cérébrale ou accident vasculaire cérébral, dont la grande majorité est de nature ischémique, constitue la troisième cause de mortalité et d'infirmité dans les pays industrialisés. Résultant de la perte d'approvisionnement de sang au cerveau privant les tissus cérébraux d'oxygène et de glucose, elle induit des dommages neuronaux irréversibles. En dépit du nombre élevé de recherches effectuées pour caractériser les mécanismes pathogènes de l'ischémie. cérébrale, les progrès vers des traitements efficaces restent pauvres. Excepté l'activateur tissulaire du plasminogène (tPA) dont le rôle est de désagréger les caillots sanguins et employé comme thérapie efficace contre l'attaque cérébrale aiguë (reperfusion par thrombolyse) mais limité à un faible pourcentage de patients, il n'y a actuellement aucun autre traitement médical approuvé. Le besoin de nouvelles stratégies thérapeutiques est par conséquent impératif. La mort neuronale dans l'ischémie cérébrale est entre autres due à des mécanismes excitotoxiques survenant rapidement après le début de l'attaque cérébrale. Une des principales voies moléculaires impliquée conduisant à la mort excitotoxique des cellules est la voie de la c-Jun NH2terminal kinase (JNK). Plusieurs études ont déjà montré l'efficacité d'un agent neuroprotecteur d'un nouveau type, un peptide dextrogyre synthétisé sous la forme retro inverso (XG-102, précédemment D-JNKI1) résistant aux protéases, capable de pénétrer dans les cellules et de bloquer sélectivement et fortement l'accès de JNK à plusieurs de ses cibles. Une puissante protection a été observée avec ce composé dans plusieurs modèles d'ischémie (Borsello et al. 2003;Hirt et al. 2004). Ce composé chimérique, construit à partir d'une séquence TAT de 10 acides aminés suivie par une séquence de 20 acides aminés d'un domaine liant JNK (JBD) issu de la molécule JNK protéine inhibitrice. (JIP), induit à la fois une réduction importante de la taille de lésion et un comportement fonctionnel amélioré. De plus il présente une fenêtre thérapeutique étendue. XG-102 a prouvé sa puissante efficacité dans un modèle d'occlusion de l'artère cérébrale moyenne chez la souris avec injection intracerebroventriculaire (i.c.v.) mais afin de pouvoir envisager le développement de ce composé pour l'attaque cérébrale chez l'homme, il était donc nécessaire de déterminer la faisabilité de son administration systémique. Les études faisant l'objet de cette thèse ont permis de montrer une neuroprotection importante avec XG-102 administré de façon systémique après l'occlusion transitoire de l'artère cérébrale moyenne chez la souris (MCAo). De plus nos données ont fourni des informations quant à la faisabilité de combiner XG-102 et tPA, démontrant une protection efficace par XG-102 malgré l'action nuisible du tPA sur la survie des cellules. En combinant les bénéfices de la reperfusion avec les effets d'un composé neurooprotecteur, cela représenterait l'avantage d'apporter des meilleures chances de protéger le tissu cérébral.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stress-activated protein kinase c-Jun NH2-terminal kinase (JNK) is a central signal for interleukin-1beta (IL-1beta)-induced apoptosis in insulin-producing beta-cells. The cell-permeable peptide inhibitor of JNK (JNKI1), that introduces the JNK binding domain (JBD) of the scaffold protein islet-brain 1 (IB1) inside cells, effectively prevents beta-cell death caused by this cytokine. To define the molecular targets of JNK involved in cytokine-induced beta-cell apoptosis we investigated whether JNKI1 or stable expression of JBD affected the expression of selected pro- and anti-apoptotic genes induced in rat (RIN-5AH-T2B) and mouse (betaTC3) insulinoma cells exposed to IL-1beta. Inhibition of JNK significantly reduced phosphorylation of the specific JNK substrate c-Jun (p<0.05), IL-1beta-induced apoptosis (p<0.001), and IL-1beta-mediated c-fos gene expression. However, neither JNKI1 nor JBD did influence IL-1beta-induced NO synthesis or iNOS expression or the transcription of the genes encoding mitochondrial manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase rho (GSTrho), heat shock protein (HSP) 70, IL-1beta-converting enzyme (ICE), caspase-3, apoptosis-inducing factor (AIF), Bcl-2 or Bcl-xL. We suggest that the anti-apoptotic effect of JNK inhibition by JBD is independent of the transcription of major pro- and anti-apoptotic genes, but may be exerted at the translational or posttranslational level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proper function of the wall of bladder requires gap junctional communication for coordinating the responses of smooth muscle (SMC) and urothelial cells exposed to urine pressure. In the rat bladder, Cx43 is expressed by SMC and urothelial cells, whereas Cx26 expression is restricted to the epithelium. We used a model of bladder outlet obstruction, in which a ligature is placed around the urethra to increase voiding pressure. Increased fluid pressure was associated with increased Cx43 and Cx26 mRNA expression and with the activation of a signaling cascade including the transcription factor c-Jun, which is a component of the AP-1 complex. The signaling pathway of the c-Jun NH2 terminal kinase (JNK) requires the presence of the scaffold protein Islet-Brain1/c-Jun amino-terminal kinase Interacting Protein-1 (IB1/JIP-1). Under stress conditions resulting from urine retention, we have found a reduced content of IB1/JIP-1 in urothelial cells, which in turn induced a drastic increase of JNK and AP-1 binding activities. The stress-induced activation of JNK was prevented by overexpressing IB1/JIP-1, using a viral gene transfer approach, a condition which also resulted in a decrease in Cx26 mRNA. The data show that: 1) mechanical stress of urothelial cells activates in vivo JNK, as a consequence of a regulated expression of IB1/JIP-1 and 2) that urothelial Cx26 may be directly regulated by the AP-1 complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In solid organ transplantation, ischemia/reperfusion (IR) injury during organ procurement, storage and reperfusion is an unavoidable detrimental event for the graft, as it amplifies graft inflammation and rejection. Intracellular mitogen-activated protein kinase (MAPK) signaling pathways regulate inflammation and cell survival during IR injury. The four best-characterized MAPK subfamilies are the c-Jun NH2-terminal kinase (JNK), extracellular signal- regulated kinase-1/2 (ERK1/2), p38 MAPK, and big MAPK-1 (BMK1/ERK5). Here, we review the role of MAPK activation during myocardial IR injury as it occurs during heart transplantation. Most of our current knowledge regarding MAPK activation and cardioprotection comes from studies of preconditioning and postconditioning in nontransplanted hearts. JNK and p38 MAPK activation contributes to myocardial IR injury after prolonged hypothermic storage. p38 MAPK inhibition improves cardiac function after cold storage, rewarming and reperfusion. Small-molecule p38 MAPK inhibitors have been tested clinically in patients with chronic inflammatory diseases, but not in transplanted patients, so far. Organ transplantation offers the opportunity of starting a preconditioning treatment before organ procurement or during cold storage, thus modulating early events in IR injury. Future studies will need to evaluate combined strategies including p38 MAPK and/or JNK inhibition, ERK1/2 activation, pre- or postconditioning protocols, new storage solutions, and gentle reperfusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidized low-density lipoproteins (LDL) play a central role in atherogenesis and induce expression of the antioxidant stress protein heme oxygenase 1 (HO-1). In the present study we investigated induction of HO-1 and adaptive increases in reduced glutathione (GSH) in human aortic smooth muscle cells (SMC) in response to moderately oxidized LDL (moxLDL, 100 mu g protein/ml, 24 h), a species containing high levels of lipid hydroperoxides. Expression and activity of HO-1 and GSH levels were elevated to a greater extent by moxLDL than highly oxidized LDL but unaffected by native or acetylated LDL. Inhibitors of protein kinase C (PKC) or mitogen-activated protein kinases (MAPK) p38(MAPK) and MEK or c-jun-NH2-terminal kinase (JNK) significantly attenuated induction of HO-1. Phosphorylation of p38(MAPK), extracellular signal-regulated kinase (ERK1/2), or JNK and nuclear translocation of the transcription factor Nrf2 were enhanced following acute exposure of SMC to rnoxLDL (100 mu g proteiri/ml, 1-2 h). Pretreatment of SMC with the antioxidant vitamin C (100 mu M, 24 h) attenuated the induction of HO-1 by moxLDL. Native and oxidized LDL did not alter basal levels of intracellular ATP, mitochondrial dehydrogenase activity, or expression of the lectin-like oxidized LDL receptor (LOX-1) in SMC. These findings demonstrate for the first time that activation of PKC, p38(MAPK), JNK, ERK1/2, and Nrf2 by oxidized LDL in human SMC leads to HO-1 induction, constituting an adaptive response against oxidative injury that can be ameliorated by vitamin C. (C) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Peroxynitrite (ONOO-) is formed in the inflamed and degenerating human joint. Peroxynitrite-modified collagen-II (PMC-II) was recently discovered in the serum of patients with osteoarthritis (OA) and rheumatoid arthritis (RA). Therefore we investigated the cellular effects of PMC-II on human mesenchymal progenitor cells (MPCs) as a model of cartilage and cartilage repair cells in the inflamed and degenerating joint. Design: MPCs were isolated from the trabecular bone of patients undergoing reconstructive surgery and were differentiated into a chondrogenic lineage. Cells were exposed to PMC-II and levels of the proinflammatory mediators nitric oxide (NO) and prostaglandin E-2 (PGE(2)) measured. Levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), phosphorylated mitogen activated protein kinases (MAPKs) and nuclear factor kappa B (NF-kappa B) activation were measured by enzyme linked immunosorbent assay (ELISA) together with specific MAPK and NF-kappa B inhibitors. Results: PMC-II induced NO and PGE(2) synthesis through upregulation of iNOS and COX-2 proteins. PMC-II also lead to the phosphorylation of MAPKs, extracellularly regulated kinase 1/2 (ERK1/2) and p38 [but not c-Jun NH2-terminal kinase (JNK1/2)] and the activation of proinflammatory transcription factor NF-kappa B. Inhibitors of p38, ERK1/2 and NF-kappa B prevented PMC-II induced NO and PGE(2) synthesis, NOS and COX-2 protein expression and NF-kappa B activation. Conclusion: iNOS, COX-2, NF-KB and MAPK are known to be activated in the joints of patients with OA and RA. PMC-II induced iNOS and COX-2 synthesis through p38, ERK1/2 and NF-KB dependent pathways suggesting a previously unidentified pathway for the synthesis of the proinflammatory mediators, NO and PGE(2), further suggesting that inhibitors of these pathways may be therapeutic in the inflamed and degenerating human joint. (c) 2005 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethnopharmacological relevance Propolis is a bee product with numerous biological and pharmacological properties, such as immunomodulatory and anti-inflammatory activities. It has been used in folk medicine as a healthy drink and in food to improve health and prevent inflammatory diseases. However, little is known about its mechanism of action. Thus, the goal of this study was to verify the antioxidant activity and to explore the anti-inflammatory properties of propolis by addressing its intracellular mechanism of action. Caffeic acid was investigated as a possible compound responsible for propolis action. Materials and methods The antioxidant properties of propolis and caffeic acid were evaluated by using the 2,2-Diphenyl-1-picrylhydrazyl free radical (DPPH) scavenging method. To analyze the anti-inflammatory activity, Raw 264.7 macrophages were treated with different concentrations of propolis or caffeic acid, and nitric oxide (NO) production, a strong pro-inflammatory mediator, was evaluated by the Griess reaction. The concentrations of propolis and caffeic acid that inhibited NO production were evaluated on intracellular signaling pathways triggered during inflammation, namely p38 mitogen-activated protein kinase (MAPK), c-jun NH2-terminal kinase (JNK1/2), the transcription nuclear factor (NF)-κB and extracellular signal-regulated kinase (ERK1/2), through Western blot using specific antibodies. A possible effect of propolis on the cytotoxicity of hepatocytes was also evaluated, since this product can be used in human diets. Results Caffeic acid showed a higher antioxidant activity than propolis extract. Propolis and caffeic acid inhibited NO production in macrophages, at concentrations without cytotoxicity. Furthermore, both propolis and caffeic acid suppressed LPS-induced signaling pathways, namely p38 MAPK, JNK1/2 and NF-κB. ERK1/2 was not affected by propolis extract and caffeic acid. In addition, propolis and caffeic acid did not induce hepatotoxicity at concentrations with strong anti-inflammatory potential. Conclusions Propolis exerted an antioxidant and anti-inflammatory action and caffeic acid may be involved in its inhibitory effects on NO production and intracellular signaling cascades, suggesting its use as a natural source of safe anti-inflammatory drugs. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In sepsis, toll-like receptor (TLR)-4 modulates the migration of neutrophils to infectious foci, favoring bacteremia and mortality. In experimental sepsis, organ dysfunction and cytokines released by activated macrophages can be reduced by gastrin-releasing peptide (GRP) receptor (GRPR) antagonist RC-3095. Here we report a link between GRPR and TLR-4 in experimental models and in sepsis patients. RAW 264.7 culture cells were exposed to lipopolysaccharide (LPS) or tumor necrosis factor (TNF)-alpha and RC-3095 (10 ng/mL), Male Wistar rats were subjected to cecal ligation and puncture (CLP), and RC-3095 was administered (3 mg/kg, subcutaneously); after 6 h, we removed the blood, bronchoalveolar lavage, peritoneal lavage and lung. Human patients with a clinical diagnosis of sepsis received a continuous infusion with RC-3095 (3 mg/kg, intravenous) over a period of 12 h, and plasma was collected before and after RC-3095 administration and, in a different set of patients with systemic inflammatory response syndrome (SIRS) or sepsis. GRP plasma levels were determined. RC-3095 inhibited TLR-4, extracellular-signal-related kinase (ERK)-1/2, Jun NH2-terminal kinase (JNK) and Akt and decreased activation of activator protein 1 (AP-1), nuclear factor (NF)-kappa B and interleukin (IL)-6 in macrophages stimulated by LPS. It also decreased IL-6 release from macrophages stimulated by TNF-alpha. RC-3095 treatment in CLP rats decreased lung TLR-4, reduced the migration of cells to the lung and reduced systemic cytokines and bacterial dissemination. Patients with sepsis and systemic inflammatory response syndrome have elevated plasma levels of GRP which associates with clinical outcome in the sepsis patients. These findings highlight the role of GRPR signaling in sepsis outcome and the beneficial action of GRPR antagonists in controlling the inflammatory response in sepsis through a mechanism involving at least inhibition of TLR-4 signaling. Online address: http://www.molmed.org doi: 10.2119/molmed.2012.00083

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alveolar macrophages (AMs) are important cells in the resolution of the inflammatory process and they come into direct contact with inhaled pollutants. Hydroquinone (HQ) is an environmental pollutant and a component of cigarette smoke that causes immunosuppressive effects. In the present work, we showed that mice exposed to low levels of aerosolized HQ (25 ppm; 1 h/day/5 days) presented impaired mononuclear cell migration to the lipopolysaccharide (LPS)-inflamed lung. This may have been due to reduced monocyte chemoattractant protein-1 (MCP-1) secretion into bronchoalveolar lavage fluid (BALF), and it was not related to alterations to mononuclear cell mobilization into the blood or adhesion molecules expression on mononuclear cell membranes. Corroborating the actions of HQ on MCP-1 secretion, reduced MCP-1 concentrations were also found in the supernatant of ex vivo AM and tracheal tissue collected from HQ-exposed mice. A direct action of HQ on MCP-1 secretion, resulting from impaired gene synthesis, was verified by in vitro incubation of naive AMs or tracheal tissue with HQ. The role of reduced levels of MCP-1 in the BALF on monocyte migration was analysed in the human monocytic lineage THP-1 in in vitro chemotaxis assays, which showed that the reduced concentrations of MCP-1 found in the BALF or cell supernatants from HQ-exposed mice impaired cell migration. Considering the fact that MCP-1 presents a broad spectrum of actions on pathophysiological conditions and that resident mononuclear cells are involved in lung tissue homeostasis and in immune host defence, the mechanism of HQ toxicity presented herein might be relevant to the genesis of infectious lung diseases in smokers and in inhabitants of polluted areas. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eph receptors and their ligands (ephrins) play an important role in axonal guidance, topographic mapping, and angiogenesis. The signaling pathways mediating these activities are starting to emerge and are highly cell- and receptor-type specific. Here we demonstrate that activated EphB1 recruits the adaptor proteins Grb2 and p52Shc and promotes p52Shc and c-Src tyrosine phosphorylation as well as MAPK/extracellular signal-regulated kinase (ERK) activation. EphB1-mediated increase of cell migration was abrogated by the MEK inhibitor PD98059 and Src inhibitor PP2. In contrast, cell adhesion, which we previously showed to be c-jun NH2-terminal kinase (JNK) dependent, was unaffected by ERK1/2 and Src inhibition. Expression of dominant-negative c-Src significantly reduced EphB1-dependent ERK1/2 activation and chemotaxis. Site-directed mutagenesis experiments demonstrate that tyrosines 600 and 778 of EphB1 are required for its interaction with c-Src and p52Shc. Furthermore, phosphorylation of p52Shc by c-Src is essential for its recruitment to EphB1 signaling complexes through its phosphotyrosine binding domain. Together these findings highlight a new aspect of EphB1 signaling, whereby the concerted action of c-Src and p52Shc activates MAPK/ERK and regulates events involved in cell motility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear factor-kappaB regulates genes that control immune and inflammatory responses and are involved in the pathogenesis of several diseases, including AIDS and cancer. It has been proposed that reactive oxygen intermediates participate in NF-kappaB activation pathways, and compounds with putative antioxidant activity such as N-acetyl-L-cysteine (NAC) and pyrrolidine dithiocarbamate (PDTC) have been used interchangeably to demonstrate this point. We examined their effects, separately and combined, on different stages of the NF-kappaB activation pathway, in primary and in transformed T cells. We show that NAC, contrary to its reported role as an NF-kappaB inhibitor, can actually enhance rather than inhibit IkappaB degradation and, most importantly, show that in all cases NAC exerts a dominant antagonistic effect on PDTC-mediated NF-kappaB inhibition. This was observed at the level of IkappaB degradation, NF-kappaB DNA binding, and HIV-LTR-driven reporter gene expression. NAC also counteracted growth arrest and apoptosis induced by dithiocarbamates. Antagonistic effects were further observed at the level of jun-NH2-terminal kinase, p38 and ATF-2 activation. Our findings argue against the widely accepted assumption that NAC inhibits all NF-kappaB activation pathways and shows that two compounds, previously thought to function through a common inhibitory mechanism, can also have antagonistic effects.