997 resultados para Johnson, Edwin S., 1857-
Resumo:
The MIT-Scheme program development environment includes a general-purpose text editor, Edwin, that has an extension language, Edwin Scheme. Edwin is very similar to another general-purpose text editor, GNU Emacs, which also has an extension language, Emacs Lisp. The popularity of GNU Emacs has lead to a large library of tools written in Emacs Lisp. The goal of this thesis is to implement a useful subset of Emacs Lisp in Edwin Scheme. This subset was chosen to be sufficient for simple operation of the GNUS news reading program.
Resumo:
Priest, Andrew, Kennedy, Johnson and NATO: Britain, America and the Dynamics of Alliance, 1962-68 (New York: Routledge, 2006), wpp.xiv+222 RAE2008
Resumo:
http://www.archive.org/details/encyclopaediamis02unknuoft
Resumo:
We prove that the first complex homology of the Johnson subgroup of the Torelli group Tg is a non-trivial, unipotent Tg-module for all g ≥ 4 and give an explicit presentation of it as a Sym H 1(Tg,C)-module when g ≥ 6. We do this by proving that, for a finitely generated group G satisfying an assumption close to formality, the triviality of the restricted characteristic variety implies that the first homology of its Johnson kernel is a nilpotent module over the corresponding Laurent polynomial ring, isomorphic to the infinitesimal Alexander invariant of the associated graded Lie algebra of G. In this setup, we also obtain a precise nilpotence test. © European Mathematical Society 2014.
Resumo:
The SB distributional model of Johnson's 1949 paper was introduced by a transformation to normality, that is, z ~ N(0, 1), consisting of a linear scaling to the range (0, 1), a logit transformation, and an affine transformation, z = γ + δu. The model, in its original parameterization, has often been used in forest diameter distribution modelling. In this paper, we define the SB distribution in terms of the inverse transformation from normality, including an initial linear scaling transformation, u = γ′ + δ′z (δ′ = 1/δ and γ′ = �γ/δ). The SB model in terms of the new parameterization is derived, and maximum likelihood estimation schema are presented for both model parameterizations. The statistical properties of the two alternative parameterizations are compared empirically on 20 data sets of diameter distributions of Changbai larch (Larix olgensis Henry). The new parameterization is shown to be statistically better than Johnson's original parameterization for the data sets considered here.