976 resultados para Jet


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports measurements of turbulent quantities in an axisymmetric wall jet subjected to an adverse pressure gradient in a conical diffuser, in such a way that a suitably defined pressure-gradient parameter is everywhere small. Self-similarity is observed in the mean velocity profile, as well as the profiles of many turbulent quantities at sufficiently large distances from the injection slot. Autocorrelation measurements indicate that, in the region of turbulent production, the time scale of ν fluctuations is very much smaller than the time scale of u fluctuations. Based on the data on these time scales, a possible model is proposed for the Reynolds stress. One-dimensional energy spectra are obtained for the u, v and w components at several points in the wall jet. It is found that self-similarity is exhibited by the one-dimensional wavenumber spectrum of $\overline{q^2}(=\overline{u^2}+\overline{v^2}+\overline{w^2})$, if the half-width of the wall jet and the local mean velocity are used for forming the non-dimensional wavenumber. Both the autocorrelation curves and the spectra indicate the existence of periodicity in the flow. The rate of dissipation of turbulent energy is estimated from the $\overline{q^2}$ spectra, using a slightly modified version of a previously suggested method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aggregation in hydroxyacetone (HA) is studied using low-temperature FTIR, supersonic jet expansion, and X-ray crystallographic (in situ cryocrystallization) techniques. Along with quantum chemical methods (MP2 and DFT), the experiments unravel the conformational preferences of HA upon aggregation to dinners and oligomers. The O-H center dot center dot center dot O=C intramolecular hydrogen bond present in the gas-phase monomer partially opens upon aggregation in supersonic expansions, giving rise to intermolecular cooperatively enhanced O-H center dot center dot center dot O-H hydrogen bonds in competition with isolated O-H center dot center dot center dot O=C hydrogen bonds. On the other hand, low-temperature IR studies on the neat solid and X-ray crystallographic data reveal that HA undergoes profound conformational changes upon crystallization, with the HOCC dihedral angle changing from similar to 0 degrees in the gas phase to similar to 180 degrees in the crystalline phase, hence giving rise to a completely new conformation. These conclusions are supported by theoretical calculations performed on the geometry derived from the crystalline phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the orbital modulation of X-rays from Cyg X-3, using data from Swift, INTEGRAL and RXTE. Using the wealth of data presently available and an improved averaging method, we obtain energy-dependent folded and averaged light curves with unprecedented accuracy. We find that above similar to 5?keV the modulation depth decreases with increasing energy, which is consistent with the modulation being caused by both boundfree absorption and Compton scattering in the stellar wind of the donor, with minima corresponding to the highest optical depth, which occurs around the superior conjunction. We find a decrease of the depth below similar to 3?keV, which appears to be due to re-emission of the absorbed continuum by the wind in soft X-ray lines. Based on the shape of the folded light curves, any X-ray contribution from the jet in Cyg X-3, which emits ?-rays detected at energies >0.1?GeV in the soft spectral states, is found to be minor up to similar to 100?keV. This implies the presence of a rather sharp low-energy break in the jet MeV-range spectrum. We also calculate phase-resolved RXTE X-ray spectra and show that the difference between the spectra corresponding to phases around superior and inferior conjunctions can indeed be accounted for by the combined effect of boundfree absorption in an ionized medium and Compton scattering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small quantity of energetic material coated on the inner wall of a polymer tube is proposed as a new method to generate micro-shock waves in the laboratory. These micro-shock waves have been harnessed to develop a novel method of delivering dry particle and liquid jet into the target. We have generated micro-shock waves with the help of reactive explosive compound high melting explosive (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) and traces of aluminium] coated polymer tube, utilising 9 J of energy. The detonation process is initiated electrically from one end of the tube, while the micro-shock wave followed by the products of detonation escape from the open end of the polymer tube. The energy available at the open end of the polymer tube is used to accelerate tungsten micro-particles coated on the other side of the diaphragm or force a liquid jet out of a small cavity filled with the liquid. The micro-particles deposited on a thin metal diaphragm (typically 100-mu m thick) were accelerated to high velocity using micro-shock waves to penetrate the target. Tungsten particles of 0.7 mu m diameter have been successfully delivered into agarose gel targets of various strengths (0.6-1.0 %). The device has been tested by delivering micro-particles into potato tuber and Arachis hypogaea Linnaeus (ground nut) stem tissue. Along similar lines, liquid jets of diameter 200-250 mu m (methylene blue, water and oils) have been successfully delivered into agarose gel targets of various strengths. Successful vaccination against murine salmonellosis was demonstrated as a biological application of this device. The penetration depths achieved in the experimental targets are very encouraging to develop a future device for biological and biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vaporization characteristics of pendant droplets of various chemical compositions (like conventional fuels, alternative fuels and nanosuspensions) subjected to convective heating in a laminar air jet have been analyzed. Different heating conditions were achieved by controlling the air temperature and velocity fields around the droplet. A hybrid timescale has been proposed which incorporates the effects of latent heat of vaporization, saturation vapor pressure and thermal diffusivity. This timescale in essence encapsulates the different parameters that influence the droplet vaporization rate. The analysis further permits the evaluation of the effect of various parameters such as surrounding temperature, Reynolds number, far-field vapor presence, impurity content and agglomeration dynamics (nanosuspensions) in the droplet. Flow visualization has been carried out to understand the role of internal recirculation on the vaporization rate. The visualization indicates the presence of a single vortex cell within the droplet on account of the rotation and oscillation of the droplet due to aerodynamic load. External heating induced agglomeration in nanofluids leads to morphological changes during the vaporization process. These morphological changes and alteration in vaporization behavior have been assessed using high speed imaging of the diameter regression and Scanning Electron Microscopy images of the resultant precipitate. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the study of a submerged jet for the suction of unwanted fluid. This submerged jet is caused by the fluid coming out from a source. The presence of a sink in front of this source facilitates the suction of the fluid depending upon the source and sink flow rates, the axial and lateral separations of the source and sink, and the angle between the axes of the source and sink. The main purpose is the determination of the sink flow rate for 100% removal of the source fluid as a function of these parameters. The experiments have been carried using a source nozzle 6 mm in diameter and two sizes for the sink pipe diameter: 10 mm and 20 mm. The main diagnostics used are flow visualization using dye and particle image velocimetry (PIV). The dependence of the required suction flow rate to obtain 100% effectiveness on the suction tube diameter and angle is relatively weak compared to the lateral separation. DOI: 10.1115/1.4007266]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flow produced by a rigid symmetric NACA0015 airfoil purely pitching at a fixed location in quiescent fluid (the limiting case of infinite Strouhal number) is studied using visualizations and particle image velocimetry. A weak jet is generated whose inclination changes continually with time. This meandering is observed to be random and independent of the initial conditions, over a wide range of pitching parameters. (C) 2013 American Institute of Physics.