937 resultados para Jehol Biota
Resumo:
Este Ponto de Vista resume as conclusões de um Workshop conjunto, organizado pelos três Programas da FAPESP na Área Ambiental - BIOTA (O Instituto Virtual da Biodiversidade) - BIOEN (Pesquisa em Bioenergia) - Mudanças Climáticas, para discutir a contribuição da comunidade científica para a RIO+20, a Conferência das Nações Unidas para o Desenvolvimento Sustentável. O grupo de pesquisadores brasileiros reunidos pela FAPESP no início de março de 2012 levantou as seguintes preocupações: a) o número reduzido de oportunidades para a comunidade científica interagir com Conferências como a RIO+20; b) as graves deficiências do ZeroDraft, documento produzido pela Divisão das Nações Unidas para o Desenvolvimento Sustentável para a RIO +20; c) o fato do foco de pesquisa dos três Programas de Pesquisa Ambiental da FAPESP - biodiversidade, bioenergia e mudanças climáticas - não estarem na pauta das discussões da RIO+20; d) que pouca ênfase é dada aos oceanos na Agenda da Conferência; e) em relação aos mecanismos de mercado associados com a transição para uma economia mais verde, a necessidade de enfatizar a redução de subsídios perversos e a promoção de incentivos econômicos para atividades ou processos de mitigação e/ou seqüestro de carbono; f) a necessidade de estimular o desenvolvimento e a consolidação da pesquisa na área de avaliação e valoração de serviços ambientais, no Brasil. Os participantes do Workshop reconheceram a necessidade de aprofundar o conhecimento sobre as convenções, tratados e acordos internacionais assinados e ratificados pelo Brasil, bem como as instituições internacionais, programas e iniciativas que promovem a participação da comunidade científica no debate de políticas ambientais globais. Finalmente, do ponto de vista dos três programas da FAPESP dois pontos foram destacados: a) que é imperativo aprofundar o conhecimento científico em cada uma das três áreas focais - biodiversidade, bioenergia e mudanças climáticas - porque é necessário aumentar a massa crítica de pesquisadores e do conhecimento para participar das discussões internacionais nessas áreas estratégicas; b) também é imperativo apoiar e promover projetos de pesquisa que integrem as áreas focais dos três programas, estimulando a constituição de equipes inter e transdisciplinares. Esta é uma tendência mundial na área das mudanças ambientais globais, e os participantes dos três programas sentem que podem dar uma contribuição significativa para o avanço do conhecimento, para o debate internacional e para a efetiva solução dos problemas.
Resumo:
Departamento de Botánica. Facultad de Farmacia. Universidad de Salamanca
Resumo:
[EN] The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community.
Resumo:
Trabajo realizado por Ariza, A. V., Kaartvedt, S. Rostad, A. Garijo, J. C., Arístegui, J. Fraile-Nuez, E., Hernández-León, S.
Resumo:
Due to its environmental, safety, health and socio-economic impacts, marine litter has been recognized as a 21st century global challenge, so that it has been included in Descriptor 10 of the EU MSFD. For its morphological features and anthropogenic pressures, the Adriatic Sea is very sensitive to the accumulation of debris, but data are inconsistent and fragmented. This thesis, in the framework of DeFishGear project, intents to assess marine litter on beaches and on seafloor in the Western Adriatic sea, and test if debris ingestion by fish occurs. Three beaches were sampled during two surveys in 2015. Benthic litter monitoring was carried out in the FAO GSA17 during fall 2014, using a rapido trawl. Litter ingestion was investigated through gut contents analysis of 260 fish belonging to 8 commercial species collected in Western Gulf of Venice. Average litter density on beaches was 1.5 items/m2 during spring, and decreased to 0.8 items/m2 in summer. Litter composition was heterogeneous and varied among sites, even if no significant differences were found. Most of debris consisted of plastic sheets, fragments, polystyrene pieces, mussels nets and cottons bud sticks, showing that sources are many and include aquaculture, land-based activities and local users of beaches. Average density of benthic litter was 913 items/Km2 (82 Kg/Km2). Plastic dominated in terms of numbers and weight, and consisted mainly of bags, sheets and mussel nets. The highest density was found close to the coast, and sources driving the major differences in litter distribution were mussel farms and shipping lanes. Litter ingestion occurred in 47% of examined fish, mainly consisting of fibers. Among species, S. pilchardus swallowed almost all debris categories. Findinds may provide a baseline to set the necessary measures to manage and minimize marine litter in the Western Adriatic region and to protect aquatic life from plastic pollution, even accounting the possible implications on human health.
Resumo:
On Tuesday, October 15th 2013, Ragan Callaway, the MT-EPSCoR Project Director & Division of Biological Sciences at the University of Montana spoke at Montana Tech about Soil Biota and Exotic Plant Invasions.
Resumo:
Soil biota can be important drivers of plant community structure. Depending on the balance between antagonistic and mutualistic interactions, they can limit or promote the success of plant species. This is particularly important in the context of exotic plant invasions where soil biota can either increase the biotic resistance of habitats, or they can shift the balance between exotic and native plants towards the exotics and thereby greatly contribute to their dominance. Here, we explored the role of soil biota in the invasion success of exotic knotweed (Fallopia × bohemica), one of the world's most noxious invasive plants. We created artificial native plant communities that were experimentally invaded by knotweed, using a range of substrates where we manipulated different fractions of soil biota. We found that invasive knotweed benefited more from the overall presence of soil biota than any of the six native species. In particular the presence of the full natural soil biota strongly shifted the competitive balance in favor of knotweed. Soil biota promoted both regeneration and growth of the invader, which suggests that soil organisms may be important both in the early establishment of knotweed and possibly its later dominance of native communities. Addition of activated carbon to the soil made the advantage of knotweed disappear, which suggests that the mechanisms underlying the positive soil biota effects are chemically mediated. Our study demonstrates that soil organisms play a key role in the invasion success of exotic knotweed.
Resumo:
Aquatic ecosystems are confronted with multiple stress factors. Current approaches to assess the risk of anthropogenic stressors to aquatic ecosystems are developed for single stressors and determine stressor effects primarily as a function of stressor properties. The cumulative impact of several stressors, however, may differ markedly from the impact of the single stressors and can result in nonlinear effects and ecological surprises. To meet the challenge of diagnosing and predicting multiple stressor impacts, assessment strategies should focus on properties of the biological receptors rather than on stressor properties. This change of paradigm is required because (i) multiple stressors affect multiple biological targets at multiple organizational levels, (ii) biological receptors differ in their sensitivities, vulnerabilities, and response dynamics to the individual stressors, and (iii) biological receptors function as networks, so that actions of stressors at disparate sites within the network can lead via indirect or cascading effects, to unexpected outcomes.
Resumo:
AR
Resumo:
Hydrothermal solutions were examined in a circulation system that started to develop after the 1991 volcanic eruption in the axial segment of the EPR between 9°45'N and 9°52'N. Within twelve years after this eruption, diffusion outflow of hot fluid from fractures in basaltic lavas gave way to focused seeps of hot solutions through channels of hydrothermal sulfide edifices. An example of the field Q demonstrates that from 1991 to 2003 H2S concentrations decreased from 86 to 1 mM/kg, and the Fe/H2S ratio simultaneously increased by factor 1.7. This fact can explain disappearance of microbial mats that were widespread within the fields before 1991. S isotopic composition of H2S does not depend on H2S concentration. This fact testifies rapid evolution of the hydrothermal system in the early years of its evolution. Carbon in CH4 from hot fluid sampled in 2003 is richer in 12C isotope than carbon in fluid from the hydrothermal field at 21°N EPR. It suggests that methane comes to the Q field from more than one source. Composition of particulate matter in hydrothermal solutions indicates that it was contributed by biological material. Experimental solutions with labeled substrates (t<70°C) show evidence of active processes of methane oxidation and sulfate reduction. Our results indicate that, during 12-year evolution of the hydrothermal system, composition of its solutions evolved and approached compositions of solutions in mature hydrothermal systems of the EPR.
Resumo:
The international, interdisciplinary biodiversity research project BIOTA AFRICA initiated a standardized biodiversity monitoring network along climatic gradients across the African continent. Due to an identified lack of adequate monitoring designs, BIOTA AFRICA developed and implemented the standardized BIOTA Biodiversity Observatories, that meet the following criteria (a) enable long-term monitoring of biodiversity, potential driving factors, and relevant indicators with adequate spatial and temporal resolution, (b) facilitate comparability of data generated within different ecosystems, (c) allow integration of many disciplines, (d) allow spatial up-scaling, and (e) be applicable within a network approach. A BIOTA Observatory encompasses an area of 1 km2 and is subdivided into 100 1-ha plots. For meeting the needs of sampling of different organism groups, the hectare plot is again subdivided into standardized subplots, whose sizes follow a geometric series. To allow for different sampling intensities but at the same time to characterize the whole square kilometer, the number of hectare plots to be sampled depends on the requirements of the respective discipline. A hierarchical ranking of the hectare plots ensures that all disciplines monitor as many hectare plots jointly as possible. The BIOTA Observatory design assures repeated, multidisciplinary standardized inventories of biodiversity and its environmental drivers, including options for spatial up- and downscaling and different sampling intensities. BIOTA Observatories have been installed along climatic and landscape gradients in Morocco, West Africa, and southern Africa. In regions with varying land use, several BIOTA Observatories are situated close to each other to analyze management effects.