982 resultados para JOSEFSON-NISSENZWEIG-ALPHA (JN(ALPHA)) PROPERTY
Resumo:
Murine intestinal intraepithelial lymphocytes (IEL) have been shown to contain subsets of alpha/beta TCR+ and gamma/delta TCR+ T cells that spontaneously produce cytokines such as IFN-gamma and IL-5. We have now determined the nature and cell cycle stage of these cytokine-producing T lymphocytes in EIL by using IFN-gamma- and IL-5-specific ELISPOT assay, cytokine-specific mRNA-cDNA dot-blot hybridization and polymerase chain reaction, and flow cytometry (FACS) for DNA analysis. When CD3+ T cells from IEL of normal C3H/HeN mice were separated into low and high density fractions by discontinuous Percoll gradients, IFN-gamma and IL-5 spot-forming cells were only found in the former population. Analysis of mRNA for these cytokines by both IFN-gamma- and IL-5-specific dot-blot hybridization and polymerase chain reaction revealed that higher levels of message for IFN-gamma and IL-5 were also seen in the low density fraction. However, cell cycle analysis of these two fractions by FACS using propidium iodide showed a similar pattern of cell cycle stages in both low and high density populations (G0 + G1 approximately 96 to 98% and S/G2 + M approximately 2 to 4%). Finally, mRNA from gamma/delta TCR+ and alpha/beta TCR+ T cells in both low and high density fractions of IEL were analyzed for IFN-gamma and IL-5 message by polymerase chain reaction. After 35 cycles of amplification, both gamma/delta TCR+ and alpha/beta TCR+ T cells in the low density fraction expressed higher levels of message for these two cytokines when compared with the high density population. These results have now shown that both gamma/delta and alpha/beta TCR+ IEL can be separated into low and high density subsets and both fractions possess a similar stage of cell cycle. However, only the low density cells (in G1 phase) of both gamma/delta and alpha/beta TCR types possess increased cytokine-specific mRNA and produce the cytokines IFN-gamma and IL-5. Our results suggest that alpha/beta TCR+ and gamma/delta TCR+ IEL can produce cytokines without cell proliferation.
Resumo:
Migraine is a common neurovascular brain disorder characterised by recurrent attacks of severe headache that may be accompanied by various neurological symptoms. Migraine is thought to result from activation of the trigeminovascular system followed by vasodilation of pain-producing intracranial blood vessels and activation of second-order sensory neurons in the trigeminal nucleus caudalis. Calcitonin gene-related peptide (CGRP) is a mediator of neurogenic inflammation and the most powerful vasodilating neuropeptide, and has been implicated in migraine pathophysiology. Consequently, genes involved in CGRP synthesis or CGRP receptor genes may play a role in migraine and/or increase susceptibility. This study investigates whether variants in the gene that encodes CGRP, calcitonin-related polypeptide alpha (CALCA) or in the gene that encodes a component of its receptor, receptor activity modifying protein 1 (RAMP1), are associated with migraine pathogenesis and susceptibility. The single nucleotide polymorphisms (SNPs) rs3781719 and rs145837941 in the CALCA gene, and rs3754701 and rs7590387 at the RAMP1 locus, were analysed in an Australian Caucasian population of migraineurs and matched controls. Although we find no significant association of any of the SNPs tested with migraine overall, we detected a nominally significant association (p = 0.031) of the RAMP1 rs3754701 variant in male migraine subjects, although this is non-significant after Bonferroni correction for multiple testing.
Resumo:
Migraine is a neurological disorder that is associated with increased levels of calcitonin gene-related peptide (CGRP) in plasma. CGRP, being one of the mediators of neurogenic inflammation and a phenomenon implicated in the pathogenesis of migraine headache, is thus suggested to have an important role in migraine pathophysiology. Polymorphisms of the CALCA gene have been linked to Parkinson's disease, ovarian cancer and essential hypertension, suggesting a functional role for these polymorphisms. Given the strong evidence linking CGRP and migraine, it is hypothesised that polymorphisms in the CALCA gene may play a role in migraine pathogenesis. Seemingly non functional intronic polymorphisms are capable of disrupting normal RNA processing or introducing a splice site in the transcript. A 16 bp deletion in the first intron of the CALCA gene has been reported to be a good match for the binding site for a transcription factor expressed strongly in neural crest derived cells, AP-2. This deletion also eliminates an intron splicing enhancer (ISE) that may potentially cause exon skipping. This study investigated the role of the 16 bp intronic deletion in the CALCA gene in migraineurs and matched control individuals. Six hundred individuals were genotyped for the deletion by polymerase chain reaction followed by fragment analysis on the 3130 Genetic Analyser. The results of this study showed no significant association between the intronic 16 bp deletion in the CALCA gene and migraine in the tested Australian Caucasian population. However, given the evidence linking CGRP and migraine, further investigation of variants with this gene may be warranted.
Resumo:
Previous studies in our laboratory have shown association of nuclear receptor expression and histological breast cancer grade. To further investigate these findings, it was the objective of this study to determine if expression levels of the estrogen alpha, estrogen beta and androgen nuclear receptor genes varied in different breast cancer grades. RNA extracted from paraffin embedded archival breast tumour tissue was converted into cDNA and cDNA underwent PCR to enable quantitation of mRNA expression. Expression data was normalised against the 18S ribosomal gene multiplex and analysed using ANOVA. Analysis indicated a significant alteration of expression for the androgen receptor in different cancer grades (P=0.014), as well as in tissues that no longer possess estrogen receptor alpha proteins (P=0.025). However, expression of estrogen receptors alpha and beta did not vary significantly with cancer grade (P=0.057 and 0.622, respectively). Also, the expression of estrogen receptor alpha or beta did not change, regardless of the presence of estrogen receptor alpha protein in the tissue (P=0.794 and 0.716, respectively). Post-hoc tests indicate that the expression of the androgen receptor is increased in estrogen receptor negative tissue as well as in grade 2 and grade 3 tumours, compared to control tissue. This increased expression in late stage breast tumours may have implications to the treatment of breast tumours, particularly those lacking expression of other nuclear receptor genes.
Resumo:
OBJECTIVE: To optimize the animal model of liver injury that can properly represent the pathological characteristics of dampness-heat jaundice syndrome of traditional Chinese medicine. METHODS: The liver injury in the model rat was induced by alpha-naphthylisothiocyanate (ANIT) and carbon tetrachloride (CCl(4) ) respectively, and the effects of Yinchenhao Decoction (, YCHD), a proved effective Chinese medical formula for treating the dampness-heat jaundice syndrome in clinic, on the two liver injury models were evaluated by analyzing the serum level of alanine aminotransferase (ALT), asparate aminotransferase (AST), alkaline phosphatase (ALP), malondialchehyche (MDA), total bilirubin (T-BIL), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) as well as the ratio of liver weight to body weight. The experimental data were analyzed by principal component analytical method of pattern recognition. RESULTS: The ratio of liver weight to body weight was significantly elevated in the ANIT and CCl(4) groups when compared with that in the normal control (P<0.01). The contents of ALT and T-BIL were significantly higher in the ANIT group than in the normal control (P<0.05,P<0.01), and the levels of AST, ALT and ALP were significantly elevated in CCl(4) group relative to those in the normal control P<0.01). In the YCHD group, the increase in AST, ALT and ALP levels was significantly reduced (P<0.05, P<0.01), but with no significant increase in serum T-BIL. In the CCl(4) intoxicated group, the MDA content was significantly increased and SOD, GSH-PX activities decreased significantly compared with those in the normal control group, respectively (P<0.01). The increase in MDA induced by CCl(4) was significantly reduced by YCHD P<0.05). CONCLUSION: YCHD showed significant effects on preventing liver injury progression induced by CCl(4), and the closest or most suitable animal model for damp-heat jaundice syndrome may be the one induced by CCl(4).
Resumo:
Purpose To determine the rate of recurrence and associated risk factors following the use of mitomycin C (MMC) and/or interferon alpha-2b (IFN) for management of non-invasive ocular surface squamous neoplasia (OSSN). Design Retrospective non-comparative interventional case series. Methods Clinical practice setting of 135 patients treated consecutively with topical MMC (0.4 mg/mL) and/or IFN (1 million units/mL) for OSSN observed for clinical recurrence. Results Clinical recurrences were diagnosed in 19 of 135 (14.1%) eyes following topical treatment. The mean time to recurrence was 17.2 months (range 4 - 61) with 14 (73.7%) recurring within a two year period. There was no greater risk of recurrence identified for variables including lesion size, lesion location, gender, age, treatment type or duration. Post-hoc log-Rank pairwise comparisons revealed that lesions initially treated using surgery alone had significantly reduced time to recurrence (21.1 ± 5.6 months) compared to previous topical treatment with MMC (with or without surgery) (29.6 ± 4.7 months) (p = 0.04) and primary OSSN (23.2 ± 1.8 months) (p = 0.09). Conclusions Topical MMC and IFN are an effective treatment modality for a wide range of non-invasive OSSN. Topical therapy avoids the morbidity of excisional surgery with equivalent or reduced recurrence rates and should be considered as primary therapy.
Resumo:
BACKGROUND Tubulointerstitial lesions, characterized by tubular injury, interstitial fibrosis and the appearance of myofibroblasts, are the strongest predictors of the degree and progression of chronic renal failure. These lesions are typically preceded by macrophage infiltration of the tubulointerstitium, raising the possibility that these inflammatory cells promote progressive renal disease through fibrogenic actions on resident tubulointerstitial cells. The aim of the present study, therefore, was to investigate the potentially fibrogenic mechanisms of interleukin-1beta (IL-1beta), a macrophage-derived pro-inflammatory cytokine, on human proximal tubule cells (PTC). METHODS Confluent, quiescent, passage 2 PTC were established in primary culture from histologically normal segments of human renal cortex (N = 11) and then incubated in serum- and hormone-free media supplemented with either IL-1beta (0 to 4 ng/mL) or vehicle (control). RESULTS IL-1beta significantly enhanced fibronectin secretion by up to fourfold in a time- and concentration-dependent fashion. This was accompanied by significant (2.5- to 6-fold) increases in alpha-smooth muscle actin (alpha-SMA) expression, transforming growth factor beta (TGF-beta1) secretion, nitric oxide (NO) production, NO synthase 2 (NOS2) mRNA and lactate dehydrogenase (LDH) release. Cell proliferation was dose-dependently suppressed by IL-1beta. NG-methyl-l-arginine (L-NMMA; 1 mmol/L), a specific inhibitor of NOS, blocked NO production but did not alter basal or IL-1beta-stimulated fibronectin secretion. In contrast, a pan-specific TGF-beta neutralizing antibody significantly blocked the effects of IL-1beta on PTC fibronectin secretion (IL-1beta, 268.1 +/- 30.6 vs. IL-1beta+alphaTGF-beta 157.9 +/- 14.4%, of control values, P < 0.001) and DNA synthesis (IL-1beta 81.0 +/- 6.7% vs. IL-1beta+alphaTGF-beta 93.4 +/- 2.1%, of control values, P < 0.01). CONCLUSION IL-1beta acts on human PTC to suppress cell proliferation, enhance fibronectin production and promote alpha-smooth muscle actin expression. These actions appear to be mediated by a TGF-beta1 dependent mechanism and are independent of nitric oxide release.
Resumo:
Debilitating infectious diseases caused by Chlamydia are major contributors to the decline of Australia's iconic native marsupial species, the koala (Phascolarctos cinereus). An understanding of koala chlamydial disease pathogenesis and the development of effective strategies to control infections continue to be hindered by an almost complete lack of species-specific immunological reagents. The cell-mediated immune response has been shown to play an influential role in the response to chlamydial infection in other hosts. The objective of this study, hence, was to provide preliminary data on the role of two key cytokines, pro-inflammatory tumour necrosis factor alpha (TNFα) and anti-inflammatory interleukin 10 (IL10), in the koala Chlamydia pecorum response. Utilising sequence homology between the cytokine sequences obtained from several recently sequenced marsupial genomes, this report describes the first mRNA sequences of any koala cytokine and the development of koala specific TNFα and IL10 real-time PCR assays to measure the expression of these genes from koala samples. In preliminary studies comparing wild koalas with overt chlamydial disease, previous evidence of C. pecorum infection or no signs of C. pecorum infection, we revealed strong but variable expression of TNFα and IL10 in wild koalas with current signs of chlamydiosis. The description of these assays and the preliminary data on the cell-mediated immune response of koalas to chlamydial infection paves the way for future studies characterising the koala immune response to a range of its pathogens while providing reagents to assist with measuring the efficacy of ongoing attempts to develop a koala chlamydial vaccine.
Resumo:
alpha-Carboxylate radical anions are potential reactive intermediates in the free radical oxidation of biological molecules (e. g., fatty acids, peptides and proteins). We have synthesised well-defined alpha-carboxylate radical anions in the gas phase by UV laser photolysis of halogenated precursors in an ion-trap mass spectrometer. Reactions of isolated acetate ((center dot)CH(2)CO(2)) and 1-carboxylatobutyl (CH(3)CH(2)CH(2)(center dot)CHCO(2)(-)) radical anions with dioxygen yield carbonate (CO(3)(center dot-)) radical anions and this chemistry is shown to be a hallmark of oxidation in simple and alkyl-substituted cross-conjugated species. Previous solution phase studies have shown that C(alpha)-radicals in peptides, formed from free radical damage, combine with dioxygen to form peroxyl radicals that subsequently decompose into imine and keto acid products. Here, we demonstrate that a novel alternative pathway exists for two alpha-carboxylate C(alpha)-radical anions: the acetylglycinate radical anion (CH(3)C(O)NH(center dot)CHCO(2)(-)) and the model peptide radical anion, YGGFG(center dot-). Reaction of these radical anions with dioxygen results in concerted loss of carbon dioxide and hydroxyl radical. The reaction of the acetylglycinate radical anion with dioxygen reveals a two-stage process involving a slow, followed by a fast kinetic regime. Computational modelling suggests the reversible formation of the C(alpha) peroxyl radical facilitates proton transfer from the amide to the carboxylate group, a process reminiscent of, but distinctive from, classical proton-transfer catalysis. Interestingly, inclusion of this isomerization step in the RRKM/ME modelling of a G3SX level potential energy surface enables recapitulation of the experimentally observed two-stage kinetics.
Resumo:
The application of artificial neural networks (ANN) in finance is relatively new area of research. We employed ANNs that used both fundamental and technical inputs to predict future prices of widely held Australian stocks and used these predicted prices for stock portfolio selection over a 10-year period (2001-2011). We found that the ANNs generally do well in predicting the direction of stock price movements. The stock portfolios selected by the ANNs with median accuracy are able to generate positive alpha over the 10-year period. More importantly, we found that a portfolio based on randomly selected network configuration had zero chance of resulting in a significantly negative alpha but a 27% chance of yielding a significantly positive alpha. This is in stark contrast to the findings of the research on mutual fund performance where active fund managers with negative alphas outnumber those with positive alphas.
Resumo:
We have investigated the gas-phase reaction of the alpha-aminoacetate (glycyl) radical anion (NH2(sic)CHCO2-) with O-2 using ion trap mass spectrometry, quantum chemistry, and statistical reaction rate theory. This radical is found to undergo a remarkably rapid reaction with O-2 to form the hydroperoxyl radical (HO2(sic)) and an even-electron imine (NHCHCO2-), with experiments and master equation simulations revealing that reaction proceeds at the ion molecule collision rate. This reaction is facilitated by a low-energy concerted HO2(sic) elimination mechanism in the NH2CH(OO(sic))CO2- peroxyl radical. These findings can explain the widely observed free-radical-mediated oxidation of simple amino acids to amides plus alpha-keto acids (their imine hydrolysis products). This work also suggests that imines will be the main intermediates in the atmospheric oxidation of primary and secondary amines, including amine carbon capture solvents such as 2-aminoethanol (commonly known as monoethanolamine, or MEA), in a process that avoids the ozone-promoting conversion of (sic)NO to (sic)NO2 commonly encountered in peroxyl radical chemistry.
Resumo:
The gas phase degradation reactions of the chemical warfare agent (CWA) simulant, dimethyl methylphosphonate (DMMP), with the hydroperoxide anion (HOO(-)) were investigated using a modified quadrupole ion trap mass spectrometer. The HOO(-) anion reacts readily with neutral DMMP forming two significant product ions at m/z 109 and m/z 123. The major reaction pathways correspond to (i) the nucleophilic substitution at carbon to form \[CH(3)P(O)(OCH(3))O](-) (m/z 109) in a highly exothermic process and (ii) exothermic proton transfer. The branching ratios of the two reaction pathways, 89% and 11% respectively, indicate that the former reaction is significantly faster than the latter. This is in contrast to the trend for the methoxide anion with DMMP, where proton transfer dominates. The difference in the observed reactivities of the HOO(-) and CH(3)O(-) anions can be considered as evidence for an a-effect in the gas phase and is supported by electronic structure calculations at the B3LYP/aug-cc-pVTZ//B3LYP/6-31+G(d) level of theory that indicate the S(N)2(carbon) process has an activation energy 7.8 kJ mol(-1) lower for HOO(-) as compared to CH(3)O(-). A similar alpha-effect was calculated for nucleophilic addition-elimination at phosphorus, but this process an important step in the perhydrolysis degradation of CWAs in solution - was not observed to occur with DMMP in the gas phase. A theoretical investigation revealed that all processes are energetically accessible with negative activation energies. However, comparison of the relative Arrhenius pre-exponential factors indicate that substitution at phosphorus is not kinetically competitive with respect to the S(N)2(carbon) and deprotonation processes.
Resumo:
Saliva is a crucial biofluid for oral health and is also of increasing importance as a non-invasive source of disease biomarkers. Salivary alpha-amylase is an abundant protein in saliva, and changes in amylase expression have been previously associated with a variety of diseases and conditions. Salivary alpha-amylase is subject to a high diversity of post-translational modifications, including physiological proteolysis in the oral cavity. Here we developed methodology for rapid sample preparation and non-targeted LC-ESI-MS/MS analysis of saliva from healthy subjects and observed an extreme diversity of alpha-amylase proteolytic isoforms. Our results emphasize the importance of consideration of post-translational events such as proteolysis in proteomic studies, biomarker discovery and validation, particularly in saliva. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Aboveground–belowground interactions exert critical controls on the composition and function of terrestrial ecosystems, yet the fundamental relationships between plant diversity and soil microbial diversity remain elusive. Theory predicts predominantly positive associations but tests within single sites have shown variable relationships, and associations between plant and microbial diversity across broad spatial scales remain largely unexplored. We compared the diversity of plant, bacterial, archaeal and fungal communities in one hundred and forty-five 1 m2 plots across 25 temperate grassland sites from four continents. Across sites, the plant alpha diversity patterns were poorly related to those observed for any soil microbial group. However, plant beta diversity (compositional dissimilarity between sites) was significantly correlated with the beta diversity of bacterial and fungal communities, even after controlling for environmental factors. Thus, across a global range of temperate grasslands, plant diversity can predict patterns in the composition of soil microbial communities, but not patterns in alpha diversity.
Resumo:
The crystal state conformations of three peptides containing the alpha, alpha-dialkylated residues, alpha,alpha-di-n-propylglycine (Dpg) and alpha,alpha-di-n-butylglycine (Dbg), have been established by x-ray diffraction. Boc-Ala-Dpg-Ala-OMe (I) and Boc-Ala-Dbg-Ala-OMe (III) adopt distorted type II beta-turn conformations with Ala (1) and Dpg/Dbg (2) as the corner residues. In both peptides the conformational angles at the Dxg residue (I: phi = 66.2 degrees, psi = 19.3 degrees; III: phi = 66.5 degrees, psi = 21.1 degrees) deviate appreciably from ideal values for the i + 2 residue in a type II beta-turn. In both peptides the observed (N...O) distances between the Boc CO and Ala(3) NH groups are far too long (I: 3.44 Angstrom; III: 3.63 Angstrom) for an intramolecular 4 --> 1 hydrogen bond. Boc-Ala-Dpg-Ala-NHMe (II) crystallizes with two independent molecules in the asymmetric unit. Both molecules IIA and IIB adopt consecutive beta-turn (type III-III in IIA and type III-I in IIB) or incipient 3(10)-helical structures, stabilized by two intramolecular 4 --> 1 hydrogen bonds. In all four molecules the bond angle N-C-alpha-C' (tau) at the Dxg residues are greater than or equal to 110 degrees. The observation of conformational angles in the helical region of phi,psi space at these residues is consistent with theoretical predictions.