609 resultados para Ixodes Ticks


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work evaluated the infection of opossums (Didelphis aurita) by Rickettsia felis, Rickettsia bellii, and Rickettsia parkeri and their role as amplifier hosts for horizontal transmission to Amblyomma cajennense and/or Amblyomma dubitatum ticks. Infection in D. aurita was induced by intraperitoneal inoculation with R. felis (n = 4 opossums), R. bellii (n = 4), and R. parkeri (n = 2). Another group of six opossums were inoculated intraperitoneally with Leibovitz-15 sterile culture medium, representing the uninfected groups (n = 2 opossums simultaneously to each infected group). Opossum blood samples collected during the study were used for DNA extraction, followed by real-time polymerase chain reaction targeting the rickettsial gene gltA, hematology, and detection of Rickettsia spp.-reactive antibodies by indirect immunofluorescence assay. Opossums were infested with uninfected A. cajennense and/or A. dubitatum for 30 days postinoculation (DPI). Flat ticks molted from ticks fed on opossums were allowed to feed on uninfected rabbits, which were tested for seroconversion by immunofluorescence assay. Samples of flat ticks were also tested by real-time polymerase chain reaction. Inoculated opossums showed no clinical abnormalities. Antibodies to Rickettsia spp. were first detected at the second to fourth DPI, with detectable titers until the 150th DPI. Rickettsemia was detected only in one opossum inoculated with R. parkeri, at the eighth DPI. Only one A. cajennense tick (2.0%) previously fed on a R. parkeri-inoculated opossum became infected. None of the rabbits infested with opossum-derived ticks seroconverted. The study demonstrated that R. felis, R. bellii, and R. parkeri were capable to produce antibody response in opossums, however, with undetectable rickettsemia for R. felis and R. bellii, and very low rickettsemia for R. parkeri. Further studies must be done with different strains of these rickettsiae, most importantly the strains that have never gone through in vitro passages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study evaluated the infection of opossums (Didelphis aurita) by Rickettsia rickettsii and their role as amplifier hosts for horizontal transmission of R. rickettsii to Amblyomma cajennense ticks. Three groups of opossums were evaluated: on day 0, group 1 (G1) was inoculated intraperitoneally with R. rickettsii; group 2 (G2) was infested by R. rickettsii-infected ticks; and group 3 (G3) was the uninfected control group. Opossum rectal temperature was measured daily. Blood samples were collected every 2 to 4 days during 30 days, and used to (1) inoculate guinea pigs intraperitoneally; (2) extract DNA followed by real-time polymerase chain reaction (PCR) targeting the rickettsial gene gltA; (3) study hematology; (4) detect R. rickettsii-reactive antibodies by indirect direct immunofluorescence assay (IFA). Blood was also collected every 10 days from days 30 to 180, to be tested by serology. Opossums were infested by uninfected A. cajennense larvae and nymphs from days 3 to 15. Engorged ticks were collected and allowed to molt in an incubator. Thereafter, the subsequent flat ticks were allowed to feed on uninfected rabbits, which were tested for seroconversion by IFA. Samples of flat ticks were also tested by real-time PCR. All G1 and G2 opossums became infected by R. rickettsii, as demonstrated by real-time PCR or/and guinea pig inoculation, but they showed no clinical abnormality. Rickettsemia was first detected at days 2 to 8, lasting intermittently till days 1 to 30. Approximately 18% and 5% of the flat ticks previously fed on G1 and G2 opossums, respectively, became infected by R. rickettsii, but only the rabbits infested with G1-derived ticks seroconverted. The study demonstrated that R. rickettsii was capable of infecting opossums without causing illness and developing rickettsemia capable of causing infection in guinea pigs and ticks, although the infection rate in ticks was low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Bovine anaplasmosis, caused by the rickettsial tick-borne pathogen Anaplasma marginale (Rickettsiales: Anaplasmataceae), is vectored by Rhipicephalus (Boophilus) microplus in many tropical and subtropical regions of the world. A. marginale undergoes a complex developmental cycle in ticks which results in infection of salivary glands from where the pathogen is transmitted to cattle. In previous studies, we reported modification of gene expression in Dermacentor variabilis and cultured Ixodes scapularis tick cells in response to infection with A. marginale. In these studies, we extended these findings by use of a functional genomics approach to identify genes differentially expressed in R. microplus male salivary glands in response to A. marginale infection. Additionally, a R. microplus-derived cell line, BME26, was used for the first time to also study tick cell gene expression in response to A. marginale infection. Results: Suppression subtractive hybridization libraries were constructed from infected and uninfected ticks and used to identify genes differentially expressed in male R. microplus salivary glands infected with A. marginale. A total of 279 ESTs were identified as candidate differentially expressed genes. Of these, five genes encoding for putative histamine-binding protein (22Hbp), von Willebrand factor (94Will), flagelliform silk protein (100Silk), Kunitz-like protease inhibitor precursor (108Kunz) and proline-rich protein BstNI subfamily 3 precursor (7BstNI3) were confirmed by real-time RT-PCR to be down-regulated in tick salivary glands infected with A. marginale. The impact of selected tick genes on A. marginale infections in tick salivary glands and BME26 cells was characterized by RNA interference. Silencing of the gene encoding for putative flagelliform silk protein (100Silk) resulted in reduced A. marginale infection in both tick salivary glands and cultured BME26 cells, while silencing of the gene encoding for subolesin (4D8) significantly reduced infection only in cultured BME26 cells. The knockdown of the gene encoding for putative metallothionein (93 Meth), significantly up-regulated in infected cultured BME26 cells, resulted in higher A. marginale infection levels in tick cells. Conclusions: Characterization of differential gene expression in salivary glands of R. microplus in response to A. marginale infection expands our understanding of the molecular mechanisms at the tick-pathogen interface. Functional studies suggested that differentially expressed genes encoding for subolesin, putative von Willebrand factor and flagelliform silk protein could play a role in A. marginale infection and multiplication in ticks. These tick genes found to be functionally relevant for tick-pathogen interactions will likely be candidates for development of vaccines designed for control of both ticks and tick-borne pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work evaluated the effect of the Amblyomma cajennense tick on the immune response of BALB/c mice and on horse lymph node cell proliferation. We observed that mice do not develop resistance to nymphs of this tick species and that lymphocyte proliferation of this host is inhibited by tick saliva, nymphal extract, or infestations. Horse lymph node cell proliferation is inhibited by tick saliva as well. Mice lymphocytes under the effect of tick saliva, nymphal extract, or infestations display a predominantly. p Th-2 cytokine production pattern. Observed results partially explain this tick`s disease vectoring capacity and broad host range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ticks (Acari: Ixodidae) are bloodsucking ectoparasitic arthropods of human and veterinary medical importance. Tick saliva has been shown to contain a wide range of bioactive molecules with vasodilatory, antihemostatic, and immunomodulatory activities. We have previously demonstrated that saliva from Rhipicephalus sanguineus ticks inhibits the maturation of dendritic cells (DCs) stimulated with LPS. Here we examined the mechanism of this immune subversion, evaluating the effect of tick saliva on Toll-like receptor (TLR)-4 signalling pathway in bone marrow-derived DCs. We demonstrated that R. sanguineus tick saliva impairs maturation of DCs stimulated with LIPS, a TLR-4 ligand, leading to increased production of interleukin (IL)-10 and reduced synthesis of IL-12p70 and TNF-alpha. The immunomodulatory effect of the tick saliva on the production of pro-inflammatory cytokines by DCs stimulated with LPS was associated with the observation that tick saliva inhibits the activation of the ERK 1/2 and p38 MAP kinases. These effects were independent of the expression of TLR-4 on the surface of DCs. Additionally, saliva-treated DCs also presented a similar pattern of cytokine modulation in response to other TLR ligands. Since the recent literature reports that several parasites evade immune responses through TLR-2-mediated production of IL-10, we evaluated the effect of tick saliva on the percentage of TLR-2(+) DCs stimulated with the TLR-2 ligand lipoteicoic acid (LTA). The data showed that the population of DCs expressing TLR-2 was significantly increased in DCs treated with LTA plus saliva. In addition, tick saliva alone increased the expression of TLR-2 in a dose- and time-dependent manner. Our data suggest that tick saliva induces regulatory DCs, which secrete IL-10 and low levels of IL-12 and TNF-alpha when stimulated by TLR ligands. Such regulatory DCs are associated with expression of TLR-2 and inhibition of ERK and p38, which promotes the production of IL-10 and thus down-modulates the host`s immune response, possibly favouring susceptibility to tick infestations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic cells (DCs) are powerful initiators of innate and adaptive immune responses. Ticks are blood-sucking ectoparasite arthropods that suppress host immunity by secreting immunomodulatory molecules in their saliva. Here, compounds present in Rhipicephalus sanguineus tick saliva with immunomodulatory effects on DC differentiation, cytokine production, and costimulatory molecule expression were identified. R. sanguineus tick saliva inhibited IL-12p40 and TNF-alpha while potentiating IL-10 cytokine production by bone marrow-derived DCs stimulated by Toll-like receptor-2, -4, and -9 agonists. To identify the molecules responsible for these effects, we fractionated the saliva through microcon filtration and reversed-phase HPLC and tested each fraction for DC maturation. Fractions with proven effects were analyzed by micro-HPLC tandem mass spectrometry or competition ELISA. Thus, we identified for the first time in tick saliva the purine nucleoside adenosine (concentration of similar to 110pmol/mu l) as a potent anti-inflammatory salivary inhibitor of DC cytokine production. We also found prostaglandin E(2) (PGE(2) similar to 100 nM) with comparable effects in modulating cytokine production by DCs. Both Ado and PGE(2) inhibited cytokine production by inducing cAMP-PKA signaling in DCs. Additionally, both Ado and PGE(2) were able to inhibit expression of CD40 in mature DCs. Finally, flow cytometry analysis revealed that PGE(2), but not Ado, is the differentiation inhibitor of bone marrow-derived DCs. The presence of non-protein molecules adenosine and PGE(2) in tick saliva indicates an important evolutionary mechanism used by ticks to subvert host immune cells and allow them to successfully complete their blood meal and life cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ticks affect human and animal health both directly by their blood feeding and indirectly by transmission of many disease-causing bacteria, such as Rickettsia, Ehrlichia, Borrelia, Coxiella, Cowdria, Anaplasma, Aegyptionella, and Tularemia, as well as many viruses (Piesman and Gage, 1996). In addition to these infectious agents, ticks harbor bacterial endosymbionts, such as Wolbachia persica, which was first isolated from the soft tick now classified as Argus arboreus (Suitor and Weiss, 1961).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the phylogeny of ticks (Acari:Parasitiformes:Ixodida) and their closest known mite relatives (Acari:Parasitiformes:Mesostigmata and Holothyrida) using 18S rRNA sequences. In our analyses, we included sequences from 36 taxa. Sequences for 13 hard ticks (Family Ixodidae), 5 soft ticks (Family Argasidae), and 2 mesostigmatid mites were obtained from the GenBank database and we generated sequences for 15 hard ticks and 1 holothyrid mite. Ten of these tick species were endemic to Australia. Our analyses indicated that the suborder Holothyrida is more closely related to Ixodida than to Mesostigmata, the group used as outgroup in earlier molecular studies. This finding is consistent with Lehtinen's (1991) hypothesis that the Holothyrida rather than the Mesostigmata is the sister-group to the Ixodida. Within the hard ticks the genus Aponomma and thus the family Amblyomminae were paraphyletic. Taxonomic revision of these taxa is needed. The genus Amblyomma was paraphyletic without the inclusion of typical Aponomma species (Ap. latum and Ap. fimbriatum). There was a basal divergence between endemic Australian and other species in both the Metastriata and the Prostriata divisions of the hard ticks. (C) 1999 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the isolation and characterisation of two putatively new acetylcholinesterase genes from the African cattle ticks Boophilus decoloratus and Rhipicephalus appendiculatus. The nucleotide sequences of these genes had 93% homology to each other and 95% and 91% identity, respectively, to the acetylcholinesterase gene from an Australian strain of another cattle tick, Boophilus microplus. Translation of the nucleotide sequences revealed putative amino acids that are essential for acetylcholinesterase activity: the active site serine, and the histidine and glutamate residues that associate with this serine to form the catalytic triad. All known acetylcholinesterases have three sets of cysteines that form disulfide bonds; however, the acetylcholinesterase genes of these three species of ticks encode only two sets of cysteines. Acetylcholinesterases of B. microplus from South Africa, Zimbabwe, Kenya and Mexico had 98-99% identity with acetylcholinesterase from B. microplus from Australia, whereas acetylcholinesterase from B. microplus from Indonesia was identical to that from Australia. Preliminary phylogenetic analyses surprisingly indicate that the acetylcholinesterases of ticks are closer phylogenetically to acetylcholinesterases of vertebrates than they are to those of other arthropods. (C) 1999 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tick saliva contains molecules that are inoculated at the site of attachment on their hosts in order to modulate local immune responses and facilitate a successful blood meal. Bovines express heritable, contrasting phenotypes of infestations with the cattle tick, Rhipicephalus (Boophilus) microplus: breeds of Bos taurus indicus are significantly note resistant than those of Bos taurus taurus. Tick saliva may contain molecules that interfere with adhesion of leukocytes to endothelium and resistant hosts may mount an inflammatory profile that is more efficient to hamper the tick`s blood meal. We show in vitro that adhesion of peripheral blood mononuclear cells to monolayers of cytokine-activated bovine umbilical endothelial cells was significantly inhibited by tick saliva. The inflammatory response to bites of adults of R. microplus mounted by genetically resistant and susceptible bovine hosts managed in the same pasture was investigated in vivo. The inflammatory infiltrates and levels of message coding for adhesion molecules were measured in biopsies of tick-bitten and control skin taken when animals of both breeds were exposed to low and high tick infestations. Histological studies reveal that cutaneous reactions of resistant hosts to bites of adult ticks contained significantly more basophils and eosinophils compared with reactions of the susceptible breed. Expression of the adhesion molecules - intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1) and P-selectin - was higher in adult-infested skin of susceptible hosts undergoing low infestations compared to resistant hosts; when host was exposed to high infestations expression of these adhesion molecules was down-regulated in both phenotypes of infestations. Expression of leukocyte adhesion glycoprotein-1 (LFA-1) was higher in skin from susceptible hosts undergoing low or high infestations compared to resistant hosts. Conversely, higher levels of E-selectin, which promotes adhesion of memory T cells, were expressed in skin of resistant animals. This finding may explain the resistant host`s ability to mount more rapid and efficient secondary responses that limit hematophagy and infestations. The expression profiles observed for adhesion molecules indicate that there are differences in the kinetics of the inflammatory reactions mounted by resistant and susceptible hosts and the balance between tick and host is affected by the number of tick bites a host receives. We show that the contrasting phenotypes of infestations seen in bovines infested with R. microplus are correlated with differences in the cellular and molecular composition of inflammatory infiltrates elicited by bites with adult ticks. (C) 2009 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ticks deposit saliva at the site of their attachment to a host in order to inhibit haemostasis, inflammation and innate and adaptive immune responses. The anti-haemostatic properties of tick saliva have been described by many studies, but few show that tick infestations or its anti-haemostatic components exert systemic effects in vivo. In the present study, we extended these observations and show that, compared with normal skin, bovine hosts that are genetically susceptible to tick infestations present an increase in the clotting time of blood collected from the immediate vicinity of haemorrhagic feeding pools in skin infested with different developmental stages of Rhipicepahlus microplus; conversely, we determined that clotting time of tick-infested skin from genetically resistant bovines was shorter than that of normal skin. Coagulation and inflammation have many components in common and we determined that in resistant bovines, eosinophils and basophils, which are known to contain tissue factor, are recruited in greater numbers to the inflammatory site of tick bites than in susceptible hosts. Finally, we correlated the observed differences in clotting times with the expression profiles of transcripts for putative anti-haemostatic proteins in different developmental stages of R. microplus fed on genetically susceptible and resistant hosts: we determined that transcripts coding for proteins similar to these molecules are overrepresented in salivary glands from nymphs and males fed on susceptible bovines. Our data indicate that ticks are able to modulate their host`s local haemostatic reactions. In the resistant phenotype, larger amounts of inflammatory cells are recruited and expression of anti-coagulant molecules is decreased tick salivary glands, features that can hamper the tick`s blood meal. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study evaluated the infection of capybaras (Hydrochoerus hydrochaeris) by Rickettsia rickettsii and their role as amplifier hosts for horizontal transmission of R. rickettsii to Amblyomma cajennense ticks. Two groups of two capybaras each were evaluated: on day 0, group 1 (G1) was infested by R. rickettsii-infected ticks, and group 2 (G2) was inoculated intraperitoneally with R. rickettsii. Two additional groups were control groups, not exposed to R. rickettsii, being CG1 group the control of G1, and CG2 group the control of G2. Capybara rectal temperature was measured daily. Blood samples were collected every 3 days during 30 days, and used to (i) inoculate guinea pigs intraperitoneally; (ii) DNA extraction followed by real-time PCR targeting the rickettsial gene gltA; (iii) hematology; (iv) detection of R. rickettsii-reactive antibodies by indirect immunofluorescence assay (IFA). Blood was also collected from G I capybaras every approximate to 10-30 days till the 146th day, to be tested by serology. Capybaras were infested by uninfected A. cajennense nymphs from the 3rd to the 18th day. Engorged nymphs were collected, allowed to molt to adults in an incubator. Thereafter, the subsequent flat ticks were tested by PCR. All G1 and G2 capybaras became infected by R. rickettsii, as demonstrated by guinea pig inoculation and seroconversion, but they showed no fever. Rickettsemia was continually detected from the 6th (G2 capybaras) or 9th (G1 capybaras) to the 18th day post inoculation or infestation with R. rickettsii-infected ticks. A total of 20-25% and 30-35% of the flat ticks previously fed on G1 and G2 capybaras, respectively, became infected by R. rickettsii. The study demonstrated that R. rickettsii was capable to infect capybaras without causing clinical illness, inducing rickettsemia capable to cause infection in guinea pigs and ticks. Our results indicate that capybaras act as amplifier host of R. rickettsii for A. cajennense ticks in Brazil. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to a suspected human case of Brazilian Lyme-like disease in the city of Goiatins, Tocantins State, an epidemiological survey was carried out in eight counties in this region during September 2007 and February 2008, where 1,890 ticks were collected from domestic animals and from the environment. A total of eight tick species were identified: Rhipicephalus sanguineus, Rhipicephalus (Boophilus) microplus, Dermacentor nitens, Amblyomma cajennense, Amblyomma oblongoguttatum, Amblyomma ovale, Amblyomma parvum and Amblyomma tigrinum. The last four species were described for the first time in this region. Although human parasitism by ticks is frequently described in Goiatins, no ticks collected from humans were analyzed. The Study of ixodids in this region contributes with the survey of Brazilian ticks, as well as the elucidation of the possible transmission of the agent that caused the Brazilian Lyme-like disease case in Goiatins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current Brazilian Ixodes fauna is composed of the following eight species: I. amarali Fonseca, 1935; I. aragaoi Fonseca, 1935; I. auritulus Neumann, 1904; I. fuscipes Koch, 1844; I. loricatus Neumann, 1899; I. luciae S,nevet, 1940; I. paranaensis Barros-Battesti, Arzua, Pichorim & Keirans, 2003; and I. schulzei AragA o pound & Fonseca, 1951. Further studies are needed to establish the taxonomic status of I. serrafreirei Amorim, Gazeta, Bossi & Linhares, 2003, a recently proposed species based solely on the nymphal stage. We present an up-to-date key to adults of the currently valid Brazilian species of Ixodes based on scanning electron microscopy. The relationships between Brazilian and other Neotropical Ixodes are also discussed.