976 resultados para Iterative methods (mathematics)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider algorithms for computing the Smith normal form of integer matrices. A variety of different strategies have been proposed, primarily aimed at avoiding the major obstacle that occurs in such computations-explosive growth in size of intermediate entries. We present a new algorithm with excellent performance. We investigate the complexity of such computations, indicating relationships with NP-complete problems. We also describe new heuristics which perform well in practice. Wie present experimental evidence which shows our algorithm outperforming previous methods. (C) 1997 Academic Press Limited.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interval-valued versions of the max-flow min-cut theorem and Karp-Edmonds algorithm are developed and provide robustness estimates for flows in networks in an imprecise or uncertain environment. These results are extended to networks with fuzzy capacities and flows. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This note gives a theory of state transition matrices for linear systems of fuzzy differential equations. This is used to give a fuzzy version of the classical variation of constants formula. A simple example of a time-independent control system is used to illustrate the methods. While similar problems to the crisp case arise for time-dependent systems, in time-independent cases the calculations are elementary solutions of eigenvalue-eigenvector problems. In particular, for nonnegative or nonpositive matrices, the problems at each level set, can easily be solved in MATLAB to give the level sets of the fuzzy solution. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We reinterpret the state space dimension equations for geometric Goppa codes. An easy consequence is that if deg G less than or equal to n-2/2 or deg G greater than or equal to n-2/2 + 2g then the state complexity of C-L(D, G) is equal to the Wolf bound. For deg G is an element of [n-1/2, n-3/2 + 2g], we use Clifford's theorem to give a simple lower bound on the state complexity of C-L(D, G). We then derive two further lower bounds on the state space dimensions of C-L(D, G) in terms of the gonality sequence of F/F-q. (The gonality sequence is known for many of the function fields of interest for defining geometric Goppa codes.) One of the gonality bounds uses previous results on the generalised weight hierarchy of C-L(D, G) and one follows in a straightforward way from first principles; often they are equal. For Hermitian codes both gonality bounds are equal to the DLP lower bound on state space dimensions. We conclude by using these results to calculate the DLP lower bound on state complexity for Hermitian codes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study partitions of the set of all ((v)(3)) triples chosen from a v-set into pairwise disjoint planes with three points per line. Our partitions may contain copies of PG(2, 2) only (Fano partitions) or copies of AG(2, 3) only (affine partitions) or copies of some planes of each type (mixed partitions). We find necessary conditions for Fano or affine partitions to exist. Such partitions are already known in several cases: Fano partitions for v = 8 and affine partitions for v = 9 or 10. We construct such partitions for several sporadic orders, namely, Fano partitions for v = 14, 16, 22, 23, 28, and an affine partition for v = 18. Using these as starter partitions, we prove that Fano partitions exist for v = 7(n) + 1, 13(n) + 1, 27(n) + 1, and affine partitions for v = 8(n) + 1, 9(n) + 1, 17(n) + 1. In particular, both Fano and affine partitions exist for v = 3(6n) + 1. Using properties of 3-wise balanced designs, we extend these results to show that affine partitions also exist for v = 3(2n). Similarly, mixed partitions are shown to exist for v = 8(n), 9(n), 11(n) + 1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We give a selective review of quantum mechanical methods for calculating and characterizing resonances in small molecular systems, with an emphasis on recent progress in Chebyshev and Lanczos iterative methods. Two archetypal molecular systems are discussed: isolated resonances in HCO, which exhibit regular mode and state specificity, and overlapping resonances in strongly bound HO2, which exhibit irregular and chaotic behavior. Future directions in this field are also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this paper is to analyse if Multiple-Choice Tests may be considered an interesting alternative for assessing knowledge, particularly in the Mathematics area, as opposed to the traditional methods, such as open questions exams. In this sense we illustrate some opinions of the researchers in this area. Often the perception of the people about the construction of this kind of exams is that they are easy to create. But it is not true! Construct well written tests it’s a hard work and needs writing ability from the teachers. Our proposal is analyse the construction difficulties of multiple - choice tests as well some advantages and limitations of this type of tests. We also show the frequent critics and worries, since the beginning of this objective format usage. Finally in this context some examples of Multiple-Choice Items in the Mathematics area are given, and we illustrate as how we can take advantage and improve this kind of tests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epipolar geometry is a key point in computer vision and the fundamental matrix estimation is the only way to compute it. This article surveys several methods of fundamental matrix estimation which have been classified into linear methods, iterative methods and robust methods. All of these methods have been programmed and their accuracy analysed using real images. A summary, accompanied with experimental results, is given

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The computational approach to the Hirshfeld [Theor. Chim. Acta 44, 129 (1977)] atom in a molecule is critically investigated, and several difficulties are highlighted. It is shown that these difficulties are mitigated by an alternative, iterative version, of the Hirshfeld partitioning procedure. The iterative scheme ensures that the Hirshfeld definition represents a mathematically proper information entropy, allows the Hirshfeld approach to be used for charged molecules, eliminates arbitrariness in the choice of the promolecule, and increases the magnitudes of the charges. The resulting "Hirshfeld-I charges" correlate well with electrostatic potential derived atomic charges

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Des del principi dels temps històrics, la Matemàtica s'ha generat en totes les civilitzacions sobre la base de la resolució de problemes pràctics.Tanmateix, a partir del període grec la Història ens mostra la necessitat de fer un pas més endavant: l'evolució històrica de la Matemàtica situa els mètodes de raonament com a eix central de la recerca en Matemàtica. A partir d'una ullada als objectius i mètodes de treball d'alguns autors cabdals en la Història dels conceptes matemàtics postulem l'aprenentatge de les formes de raonament matemàtic com l'objectiu central de l'educació matemàtica, i la resolució de problemes com el mitjà més eficient per a coronar aquest objectiu.English version.From the beginning of the historical times, mathematics has been generated in all the civilizations on the base of the resolution of practical problems. Nevertheless, from the greek period History shows us the necessity to take one more step: the historical evolution of mathematics locates the methods of reasoning as the central axis of the research in mathematics. Glancing over the objectives and methods of work used bysome fundamental authors in the History of the mathematical concepts we postulated the learning of the forms of mathematical reasoning like the central objective of the mathematical education, and the resolution of problems as the most efficient way to carry out this objective.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of the thermal behavior of complex packages as multichip modules (MCM¿s) is usually carried out by measuring the so-called thermal impedance response, that is: the transient temperature after a power step. From the analysis of this signal, the thermal frequency response can be estimated, and consequently, compact thermal models may be extracted. We present a method to obtain an estimate of the time constant distribution underlying the observed transient. The method is based on an iterative deconvolution that produces an approximation to the time constant spectrum while preserving a convenient convolution form. This method is applied to the obtained thermal response of a microstructure as analyzed by finite element method as well as to the measured thermal response of a transistor array integrated circuit (IC) in a SMD package.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accurate modeling of flow instabilities requires computational tools able to deal with several interacting scales, from the scale at which fingers are triggered up to the scale at which their effects need to be described. The Multiscale Finite Volume (MsFV) method offers a framework to couple fine-and coarse-scale features by solving a set of localized problems which are used both to define a coarse-scale problem and to reconstruct the fine-scale details of the flow. The MsFV method can be seen as an upscaling-downscaling technique, which is computationally more efficient than standard discretization schemes and more accurate than traditional upscaling techniques. We show that, although the method has proven accurate in modeling density-driven flow under stable conditions, the accuracy of the MsFV method deteriorates in case of unstable flow and an iterative scheme is required to control the localization error. To avoid large computational overhead due to the iterative scheme, we suggest several adaptive strategies both for flow and transport. In particular, the concentration gradient is used to identify a front region where instabilities are triggered and an accurate (iteratively improved) solution is required. Outside the front region the problem is upscaled and both flow and transport are solved only at the coarse scale. This adaptive strategy leads to very accurate solutions at roughly the same computational cost as the non-iterative MsFV method. In many circumstances, however, an accurate description of flow instabilities requires a refinement of the computational grid rather than a coarsening. For these problems, we propose a modified iterative MsFV, which can be used as downscaling method (DMsFV). Compared to other grid refinement techniques the DMsFV clearly separates the computational domain into refined and non-refined regions, which can be treated separately and matched later. This gives great flexibility to employ different physical descriptions in different regions, where different equations could be solved, offering an excellent framework to construct hybrid methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inference of Markov random field images segmentation models is usually performed using iterative methods which adapt the well-known expectation-maximization (EM) algorithm for independent mixture models. However, some of these adaptations are ad hoc and may turn out numerically unstable. In this paper, we review three EM-like variants for Markov random field segmentation and compare their convergence properties both at the theoretical and practical levels. We specifically advocate a numerical scheme involving asynchronous voxel updating, for which general convergence results can be established. Our experiments on brain tissue classification in magnetic resonance images provide evidence that this algorithm may achieve significantly faster convergence than its competitors while yielding at least as good segmentation results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many engineering problems that can be formulatedas constrained optimization problems result in solutionsgiven by a waterfilling structure; the classical example is thecapacity-achieving solution for a frequency-selective channel.For simple waterfilling solutions with a single waterlevel and asingle constraint (typically, a power constraint), some algorithmshave been proposed in the literature to compute the solutionsnumerically. However, some other optimization problems result insignificantly more complicated waterfilling solutions that includemultiple waterlevels and multiple constraints. For such cases, itmay still be possible to obtain practical algorithms to evaluate thesolutions numerically but only after a painstaking inspection ofthe specific waterfilling structure. In addition, a unified view ofthe different types of waterfilling solutions and the correspondingpractical algorithms is missing.The purpose of this paper is twofold. On the one hand, itoverviews the waterfilling results existing in the literature from aunified viewpoint. On the other hand, it bridges the gap betweena wide family of waterfilling solutions and their efficient implementationin practice; to be more precise, it provides a practicalalgorithm to evaluate numerically a general waterfilling solution,which includes the currently existing waterfilling solutions andothers that may possibly appear in future problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work provides a general framework for the design of second-order blind estimators without adopting anyapproximation about the observation statistics or the a prioridistribution of the parameters. The proposed solution is obtainedminimizing the estimator variance subject to some constraints onthe estimator bias. The resulting optimal estimator is found todepend on the observation fourth-order moments that can be calculatedanalytically from the known signal model. Unfortunately,in most cases, the performance of this estimator is severely limitedby the residual bias inherent to nonlinear estimation problems.To overcome this limitation, the second-order minimum varianceunbiased estimator is deduced from the general solution by assumingaccurate prior information on the vector of parameters.This small-error approximation is adopted to design iterativeestimators or trackers. It is shown that the associated varianceconstitutes the lower bound for the variance of any unbiasedestimator based on the sample covariance matrix.The paper formulation is then applied to track the angle-of-arrival(AoA) of multiple digitally-modulated sources by means ofa uniform linear array. The optimal second-order tracker is comparedwith the classical maximum likelihood (ML) blind methodsthat are shown to be quadratic in the observed data as well. Simulationshave confirmed that the discrete nature of the transmittedsymbols can be exploited to improve considerably the discriminationof near sources in medium-to-high SNR scenarios.