965 resultados para Iterative Assignment
Resumo:
J Biol Inorg Chem (2004) 9: 145–151 DOI 10.1007/s00775-003-0506-z
Resumo:
Combinatorial Optimization Problems occur in a wide variety of contexts and generally are NP-hard problems. At a corporate level solving this problems is of great importance since they contribute to the optimization of operational costs. In this thesis we propose to solve the Public Transport Bus Assignment problem considering an heterogeneous fleet and line exchanges, a variant of the Multi-Depot Vehicle Scheduling Problem in which additional constraints are enforced to model a real life scenario. The number of constraints involved and the large number of variables makes impracticable solving to optimality using complete search techniques. Therefore, we explore metaheuristics, that sacrifice optimality to produce solutions in feasible time. More concretely, we focus on the development of algorithms based on a sophisticated metaheuristic, Ant-Colony Optimization (ACO), which is based on a stochastic learning mechanism. For complex problems with a considerable number of constraints, sophisticated metaheuristics may fail to produce quality solutions in a reasonable amount of time. Thus, we developed parallel shared-memory (SM) synchronous ACO algorithms, however, synchronism originates the straggler problem. Therefore, we proposed three SM asynchronous algorithms that break the original algorithm semantics and differ on the degree of concurrency allowed while manipulating the learned information. Our results show that our sequential ACO algorithms produced better solutions than a Restarts metaheuristic, the ACO algorithms were able to learn and better solutions were achieved by increasing the amount of cooperation (number of search agents). Regarding parallel algorithms, our asynchronous ACO algorithms outperformed synchronous ones in terms of speedup and solution quality, achieving speedups of 17.6x. The cooperation scheme imposed by asynchronism also achieved a better learning rate than the original one.
Resumo:
The proposed game is a natural extension of the Shapley and Shubik Assignment Game to the case where each seller owns a set of different objets instead of only one indivisible object. We propose definitions of pairwise stability and group stability that are adapted to our framework. Existence of both pairwise and group stable outcomes is proved. We study the structure of the group stable set and we finally prove that the set of group stable payoffs forms a complete lattice with one optimal group stable payoff for each side of the market.
Resumo:
The aim of this study is to perform a thorough comparison of quantitative susceptibility mapping (QSM) techniques and their dependence on the assumptions made. The compared methodologies were: two iterative single orientation methodologies minimizing the l2, l1TV norm of the prior knowledge of the edges of the object, one over-determined multiple orientation method (COSMOS) and anewly proposed modulated closed-form solution (MCF). The performance of these methods was compared using a numerical phantom and in-vivo high resolution (0.65mm isotropic) brain data acquired at 7T using a new coil combination method. For all QSM methods, the relevant regularization and prior-knowledge parameters were systematically changed in order to evaluate the optimal reconstruction in the presence and absence of a ground truth. Additionally, the QSM contrast was compared to conventional gradient recalled echo (GRE) magnitude and R2* maps obtained from the same dataset. The QSM reconstruction results of the single orientation methods show comparable performance. The MCF method has the highest correlation (corrMCF=0.95, r(2)MCF =0.97) with the state of the art method (COSMOS) with additional advantage of extreme fast computation time. The l-curve method gave the visually most satisfactory balance between reduction of streaking artifacts and over-regularization with the latter being overemphasized when the using the COSMOS susceptibility maps as ground-truth. R2* and susceptibility maps, when calculated from the same datasets, although based on distinct features of the data, have a comparable ability to distinguish deep gray matter structures.
Resumo:
A multiple-partners assignment game with heterogeneous sales and multiunit demands consists of a set of sellers that own a given number of indivisible units of (potentially many different) goods and a set of buyers who value those units and want to buy at most an exogenously fixed number of units. We define a competitive equilibrium for this generalized assignment game and prove its existence by using only linear programming. In particular, we show how to compute equilibrium price vectors from the solutions of the dual linear program associated to the primal linear program defined to find optimal assignments. Using only linear programming tools, we also show (i) that the set of competitive equilibria (pairs of price vectors and assignments) has a Cartesian product structure: each equilibrium price vector is part of a competitive equilibrium with all optimal assignments, and vice versa; (ii) that the set of (restricted) equilibrium price vectors has a natural lattice structure; and (iii) how this structure is translated into the set of agents' utilities that are attainable at equilibrium.
Resumo:
We study two cooperative solutions of a market with indivisible goods modeled as a generalized assignment game: Set-wise stability and Core. We first establish that the Set-wise stable set is contained in the Core and it contains the non-empty set of competitive equilibrium payoffs. We then state and prove three limit results for replicated markets. First, the sequence of Cores of replicated markets converges to the set of competitive equilibrium payoffs when the number of replicas tends to infinity. Second, the Set-wise stable set of a two-fold replicated market already coincides with the set of competitive equilibrium payoffs. Third, for any number of replicas there is a market with a Core payoff that is not a competitive equilibrium payoff.
Resumo:
I study large random assignment economies with a continuum of agents and a finite number of object types. I consider the existence of weak priorities discriminating among agents with respect to their rights concerning the final assignment. The respect for priorities ex ante (ex-ante stability) usually precludes ex-ante envy-freeness. Therefore I define a new concept of fairness, called no unjustified lower chances: priorities with respect to one object type cannot justify different achievable chances regarding another object type. This concept, which applies to the assignment mechanism rather than to the assignment itself, implies ex-ante envy-freeness among agents of the same priority type. I propose a variation of Hylland and Zeckhauser' (1979) pseudomarket that meets ex-ante stability, no unjustified lower chances and ex-ante efficiency among agents of the same priority type. Assuming enough richness in preferences and priorities, the converse is also true: any random assignment with these properties could be achieved through an equilibrium in a pseudomarket with priorities. If priorities are acyclical (the ordering of agents is the same for each object type), this pseudomarket achieves ex-ante efficient random assignments.
Resumo:
This paper characterizes and evaluates the potential of three commercial CT iterative reconstruction methods (ASIR?, VEO? and iDose(4 ()?())) for dose reduction and image quality improvement. We measured CT number accuracy, standard deviation (SD), noise power spectrum (NPS) and modulation transfer function (MTF) metrics on Catphan phantom images while five human observers performed four-alternative forced-choice (4AFC) experiments to assess the detectability of low- and high-contrast objects embedded in two pediatric phantoms. Results show that 40% and 100% ASIR as well as iDose(4) levels 3 and 6 do not affect CT number and strongly decrease image noise with relative SD constant in a large range of dose. However, while ASIR produces a shift of the NPS curve apex, less change is observed with iDose(4) with respect to FBP methods. With second-generation iterative reconstruction VEO, physical metrics are even further improved: SD decreased to 70.4% at 0.5 mGy and spatial resolution improved to 37% (MTF(50%)). 4AFC experiments show that few improvements in detection task performance are obtained with ASIR and iDose(4), whereas VEO makes excellent detections possible even at an ultra-low-dose (0.3 mGy), leading to a potential dose reduction of a factor 3 to 7 (67%-86%). In spite of its longer reconstruction time and the fact that clinical studies are still required to complete these results, VEO clearly confirms the tremendous potential of iterative reconstructions for dose reduction in CT and appears to be an important tool for patient follow-up, especially for pediatric patients where cumulative lifetime dose still remains high.
Resumo:
RATIONALE AND OBJECTIVES: Dose reduction may compromise patients because of a decrease of image quality. Therefore, the amount of dose savings in new dose-reduction techniques needs to be thoroughly assessed. To avoid repeated studies in one patient, chest computed tomography (CT) scans with different dose levels were performed in corpses comparing model-based iterative reconstruction (MBIR) as a tool to enhance image quality with current standard full-dose imaging. MATERIALS AND METHODS: Twenty-five human cadavers were scanned (CT HD750) after contrast medium injection at different, decreasing dose levels D0-D5 and respectively reconstructed with MBIR. The data at full-dose level, D0, have been additionally reconstructed with standard adaptive statistical iterative reconstruction (ASIR), which represented the full-dose baseline reference (FDBR). Two radiologists independently compared image quality (IQ) in 3-mm multiplanar reformations for soft-tissue evaluation of D0-D5 to FDBR (-2, diagnostically inferior; -1, inferior; 0, equal; +1, superior; and +2, diagnostically superior). For statistical analysis, the intraclass correlation coefficient (ICC) and the Wilcoxon test were used. RESULTS: Mean CT dose index values (mGy) were as follows: D0/FDBR = 10.1 ± 1.7, D1 = 6.2 ± 2.8, D2 = 5.7 ± 2.7, D3 = 3.5 ± 1.9, D4 = 1.8 ± 1.0, and D5 = 0.9 ± 0.5. Mean IQ ratings were as follows: D0 = +1.8 ± 0.2, D1 = +1.5 ± 0.3, D2 = +1.1 ± 0.3, D3 = +0.7 ± 0.5, D4 = +0.1 ± 0.5, and D5 = -1.2 ± 0.5. All values demonstrated a significant difference to baseline (P < .05), except mean IQ for D4 (P = .61). ICC was 0.91. CONCLUSIONS: Compared to ASIR, MBIR allowed for a significant dose reduction of 82% without impairment of IQ. This resulted in a calculated mean effective dose below 1 mSv.
Resumo:
Purpose: To evaluate the diagnostic value and image quality of CT with filtered back projection (FBP) compared with adaptive statistical iterative reconstructed images (ASIR) in body stuffers with ingested cocaine-filled packets.Methods and Materials: Twenty-nine body stuffers (mean age 31.9 years, 3 women) suspected for ingestion of cocaine-filled packets underwent routine-dose 64-row multidetector CT with FBP (120kV, pitch 1.375, 100-300 mA and automatic tube current modulation (auto mA), rotation time 0.7sec, collimation 2.5mm), secondarily reconstructed with 30 % and 60 % ASIR. In 13 (44.83%) out of the body stuffers cocaine-filled packets were detected, confirmed by exact analysis of the faecal content including verification of the number (range 1-25). Three radiologists independently and blindly evaluated anonymous CT examinations (29 FBP-CT and 68 ASIR-CT) for the presence and number of cocaine-filled packets indicating observers' confidence, and graded them for diagnostic quality, image noise, and sharpness. Sensitivity, specificity, area under the receiver operating curve (ROC) Az and interobserver agreement between the 3 radiologists for FBP-CT and ASIR-CT were calculated.Results: The increase of the percentage of ASIR significantly diminished the objective image noise (p<0.001). Overall sensitivity and specificity for the detection of the cocaine-filled packets were 87.72% and 76.15%, respectively. The difference of ROC area Az between the different reconstruction techniques was significant (p= 0.0101), that is 0.938 for FBP-CT, 0.916 for 30 % ASIR-CT, and 0.894 for 60 % ASIR-CT.Conclusion: Despite the evident image noise reduction obtained by ASIR, the diagnostic value for detecting cocaine-filled packets decreases, depending on the applied ASIR percentage.
Resumo:
The multiscale finite volume (MsFV) method has been developed to efficiently solve large heterogeneous problems (elliptic or parabolic); it is usually employed for pressure equations and delivers conservative flux fields to be used in transport problems. The method essentially relies on the hypothesis that the (fine-scale) problem can be reasonably described by a set of local solutions coupled by a conservative global (coarse-scale) problem. In most cases, the boundary conditions assigned for the local problems are satisfactory and the approximate conservative fluxes provided by the method are accurate. In numerically challenging cases, however, a more accurate localization is required to obtain a good approximation of the fine-scale solution. In this paper we develop a procedure to iteratively improve the boundary conditions of the local problems. The algorithm relies on the data structure of the MsFV method and employs a Krylov-subspace projection method to obtain an unconditionally stable scheme and accelerate convergence. Two variants are considered: in the first, only the MsFV operator is used; in the second, the MsFV operator is combined in a two-step method with an operator derived from the problem solved to construct the conservative flux field. The resulting iterative MsFV algorithms allow arbitrary reduction of the solution error without compromising the construction of a conservative flux field, which is guaranteed at any iteration. Since it converges to the exact solution, the method can be regarded as a linear solver. In this context, the schemes proposed here can be viewed as preconditioned versions of the Generalized Minimal Residual method (GMRES), with a very peculiar characteristic that the residual on the coarse grid is zero at any iteration (thus conservative fluxes can be obtained).