70 resultados para Isotropy
Resumo:
A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above '10 POT. 18' eV at the Pierre Auger Observatory is reported. For the first time, these large-scale anisotropy searches are performed as a function of both the right ascension and the declination and expressed in terms of dipole and quadrupole moments.Within the systematic uncertainties, no significant deviation from isotropy is revealed. Upper limits on dipole and quadrupole amplitudes are derived under the hypothesis that any cosmic ray anisotropy is dominated by such moments in this energy range. These upper limits provide constraints on the production of cosmic rays above '10 POT. 18' eV, since they allow us to challenge an origin from stationary galactic sources densely distributed in the galactic disk and emitting predominantly light particles in all directions.
Resumo:
Calcium fluoride (CaF2) is one of the key lens materials in deep-ultraviolet microlithography because of its transparency at 193 nm and its nearly perfect optical isotropy. Its physical and chemical properties make it applicable for lens fabrication. The key feature of CaF2 is its extreme laser stability. rnAfter exposing CaF2 to 193 nm laser irradiation at high fluences, a loss in optical performance is observed, which is related to radiation-induced defect structures in the material. The initial rapid damage process is well understood as the formation of radiation-induced point defects, however, after a long irradiation time of up to 2 months, permanent damage of the crystals is observed. Based on experimental results, these permanent radiation-induced defect structures are identified as metallic Ca colloids.rnThe properties of point defects in CaF2 and their stabilization in the crystal bulk are calculated with density functional theory (DFT). Because the stabilization of the point defects and the formation of metallic Ca colloids are diffusion-driven processes, the diffusion coefficients for the vacancy (F center) and the interstitial (H center) in CaF2 are determined with the nudged elastic band method. The optical properties of Ca colloids in CaF2 are obtained from Mie-theory, and their formation energy is determined.rnBased on experimental observations and the theoretical description of radiation-induced point defects and defect structures, a diffusion-based model for laser-induced material damage in CaF2 is proposed, which also includes a mechanism for annealing of laser damage. rn
Resumo:
Nonlinear computational analysis of materials showing elasto-plasticity or damage relies on knowledge of their yield behavior and strengths under complex stress states. In this work, a generalized anisotropic quadric yield criterion is proposed that is homogeneous of degree one and takes a convex quadric shape with a smooth transition from ellipsoidal to cylindrical or conical surfaces. If in the case of material identification, the shape of the yield function is not known a priori, a minimization using the quadric criterion will result in the optimal shape among the convex quadrics. The convexity limits of the criterion and the transition points between the different shapes are identified. Several special cases of the criterion for distinct material symmetries such as isotropy, cubic symmetry, fabric-based orthotropy and general orthotropy are presented and discussed. The generality of the formulation is demonstrated by showing its degeneration to several classical yield surfaces like the von Mises, Drucker–Prager, Tsai–Wu, Liu, generalized Hill and classical Hill criteria under appropriate conditions. Applicability of the formulation for micromechanical analyses was shown by transformation of a criterion for porous cohesive-frictional materials by Maghous et al. In order to demonstrate the advantages of the generalized formulation, bone is chosen as an example material, since it features yield envelopes with different shapes depending on the considered length scale. A fabric- and density-based quadric criterion for the description of homogenized material behavior of trabecular bone is identified from uniaxial, multiaxial and torsional experimental data. Also, a fabric- and density-based Tsai–Wu yield criterion for homogenized trabecular bone from in silico data is converted to an equivalent quadric criterion by introduction of a transformation of the interaction parameters. Finally, a quadric yield criterion for lamellar bone at the microscale is identified from a nanoindentation study reported in the literature, thus demonstrating the applicability of the generalized formulation to the description of the yield envelope of bone at multiple length scales.
Resumo:
Purpose The better understanding of vertebral mechanical properties can help to improve the diagnosis of vertebral fractures. As the bone mechanical competence depends not only from bone mineral density (BMD) but also from bone quality, the goal of the present study was to investigate the anisotropic indentation moduli of the different sub-structures of the healthy human vertebral body and spondylophytes by means of microindentation. Methods Six human vertebral bodies and five osteophytes (spondylophytes) were collected and prepared for microindentation test. In particular, indentations were performed on bone structural units of the cortical shell (along axial, circumferential and radial directions), of the endplates (along the anterio-posterior and lateral directions), of the trabecular bone (along the axial and transverse directions) and of the spondylophytes (along the axial direction). A total of 3164 indentations down to a maximum depth of 2.5 µm were performed and the indentation modulus was computed for each measurement. Results The cortical shell showed an orthotropic behavior (indentation modulus, Ei, higher if measured along the axial direction, 14.6±2.8 GPa, compared to the circumferential one, 12.3±3.5 GPa, and radial one, 8.3±3.1 GPa). Moreover, the cortical endplates (similar Ei along the antero-posterior, 13.0±2.9 GPa, and along the lateral, 12.0±3.0 GPa, directions) and the trabecular bone (Ei= 13.7±3.4 GPa along the axial direction versus Ei=10.9±3.7 GPa along the transverse one) showed transversal isotropy behavior. Furthermore, the spondylophytes showed the lower mechanical properties measured along the axial direction (Ei=10.5±3.3 GPa). Conclusions The original results presented in this study improve our understanding of vertebral biomechanics and can be helpful to define the material properties of the vertebral substructures in computational models such as FE analysis.
Resumo:
With improving clinical CT scanning technology, the accuracy of CT-based finite element (FE) models of the human skeleton may be ameliorated by an enhanced description of apparent level bone mechanical properties. Micro-finite element (μFE) modeling can be used to study the apparent elastic behavior of human cancellous bone. In this study, samples from the femur, radius and vertebral body were investigated to evaluate the predictive power of morphology–elasticity relationships and to compare them across different anatomical regions. μFE models of 701 trabecular bone cubes with a side length of 5.3 mm were analyzed using kinematic boundary conditions. Based on the FE results, four morphology–elasticity models using bone volume fraction as well as full, limited or no fabric information were calibrated for each anatomical region. The 5 parameter Zysset–Curnier model using full fabric information showed excellent predictive power with coefficients of determination ( r2adj ) of 0.98, 0.95 and 0.94 of the femur, radius and vertebra data, respectively, with mean total norm errors between 14 and 20%. A constant orthotropy model and a constant transverse isotropy model, where the elastic anisotropy is defined by the model parameters, yielded coefficients of determination between 0.90 and 0.98 with total norm errors between 16 and 25%. Neglecting fabric information and using an isotropic model led to r2adj between 0.73 and 0.92 with total norm errors between 38 and 49%. A comparison of the model regressions revealed minor but significant (p<0.01) differences for the fabric–elasticity model parameters calibrated for the different anatomical regions. The proposed models and identified parameters can be used in future studies to compute the apparent elastic properties of human cancellous bone for homogenized FE models.
Resumo:
Discrepancies in finite-element model predictions of bone strength may be attributed to the simplified modeling of bone as an isotropic structure due to the resolution limitations of clinical-level Computed Tomography (CT) data. The aim of this study is to calculate the preferential orientations of bone (the principal directions) and the extent to which bone is deposited more in one direction compared to another (degree of anisotropy). Using 100 femoral trabecular samples, the principal directions and degree of anisotropy were calculated with a Gradient Structure Tensor (GST) and a Sobel Structure Tensor (SST) using clinical-level CT. The results were compared against those calculated with the gold standard Mean-Intercept-Length (MIL) fabric tensor using micro-CT. There was no significant difference between the GST and SST in the calculation of the main principal direction (median error=28°), and the error was inversely correlated to the degree of transverse isotropy (r=−0.34, p<0.01). The degree of anisotropy measured using the structure tensors was weakly correlated with the MIL-based measurements (r=0.2, p<0.001). Combining the principal directions with the degree of anisotropy resulted in a significant increase in the correlation of the tensor distributions (r=0.79, p<0.001). Both structure tensors were robust against simulated noise, kernel sizes, and bone volume fraction. We recommend the use of the GST because of its computational efficiency and ease of implementation. This methodology has the promise to predict the structural anisotropy of bone in areas with a high degree of anisotropy, and may improve the in vivo characterization of bone.
Resumo:
Aging societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the bone hierarchical organization. A good understanding has been reached for elastic properties on several length scales, but up to now there is a lack of reliable postyield data on the lower length scales. In order to be able to describe the behavior of bone at the microscale, an anisotropic elastic-viscoplastic damage model was developed using an eccentric generalized Hill criterion and nonlinear isotropic hardening. The model was implemented as a user subroutine in Abaqus and verified using single element tests. A FE simulation of microindentation in lamellar bone was finally performed show-ing that the new constitutive model can capture the main characteristics of the indentation response of bone. As the generalized Hill criterion is limited to elliptical and cylindrical yield surfaces and the correct shape for bone is not known, a new yield surface was developed that takes any convex quadratic shape. The main advantage is that in the case of material identification the shape of the yield surface does not have to be anticipated but a minimization results in the optimal shape among all convex quadrics. The generality of the formulation was demonstrated by showing its degeneration to classical yield surfaces. Also, existing yield criteria for bone at multiple length scales were converted to the quadric formulation. Then, a computational study to determine the influence of yield surface shape and damage on the in-dentation response of bone using spherical and conical tips was performed. The constitutive model was adapted to the quadric criterion and yield surface shape and critical damage were varied. They were shown to have a major impact on the indentation curves. Their influence on indentation modulus, hardness, their ratio as well as the elastic to total work ratio were found to be very well described by multilinear regressions for both tip shapes. For conical tips, indentation depth was not a significant fac-tor, while for spherical tips damage was insignificant. All inverse methods based on microindentation suffer from a lack of uniqueness of the found material properties in the case of nonlinear material behavior. Therefore, monotonic and cyclic micropillar com-pression tests in a scanning electron microscope allowing a straightforward interpretation comple-mented by microindentation and macroscopic uniaxial compression tests were performed on dry ovine bone to identify modulus, yield stress, plastic deformation, damage accumulation and failure mecha-nisms. While the elastic properties were highly consistent, the postyield deformation and failure mech-anisms differed between the two length scales. A majority of the micropillars showed a ductile behavior with strain hardening until failure by localization in a slip plane, while the macroscopic samples failed in a quasi-brittle fashion with microcracks coalescing into macroscopic failure surfaces. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behavior of bone at the microscale to a quasi-brittle response driven by the growth of preexisting cracks along interfaces or in the vicinity of pores at the macroscale. Subsequently, a study was undertaken to quantify the topological variability of indentations in bone and examine its relationship with mechanical properties. Indentations were performed in dry human and ovine bone in axial and transverse directions and their topography measured by AFM. Statistical shape modeling of the residual imprint allowed to define a mean shape and describe the variability with 21 principal components related to imprint depth, surface curvature and roughness. The indentation profile of bone was highly consistent and free of any pile up. A few of the topological parameters, in particular depth, showed significant correlations to variations in mechanical properties, but the cor-relations were not very strong or consistent. We could thus verify that bone is rather homogeneous in its micromechanical properties and that indentation results are not strongly influenced by small de-viations from the ideal case. As the uniaxial properties measured by micropillar compression are in conflict with the current literature on bone indentation, another dissipative mechanism has to be present. The elastic-viscoplastic damage model was therefore extended to viscoelasticity. The viscoelastic properties were identified from macroscopic experiments, while the quasistatic postelastic properties were extracted from micropillar data. It was found that viscoelasticity governed by macroscale properties has very little influence on the indentation curve and results in a clear underestimation of the creep deformation. Adding viscoplasticity leads to increased creep, but hardness is still highly overestimated. It was possible to obtain a reasonable fit with experimental indentation curves for both Berkovich and spherical indenta-tion when abandoning the assumption of shear strength being governed by an isotropy condition. These results remain to be verified by independent tests probing the micromechanical strength prop-erties in tension and shear. In conclusion, in this thesis several tools were developed to describe the complex behavior of bone on the microscale and experiments were performed to identify its material properties. Micropillar com-pression highlighted a size effect in bone due to the presence of preexisting cracks and pores or inter-faces like cement lines. It was possible to get a reasonable fit between experimental indentation curves using different tips and simulations using the constitutive model and uniaxial properties measured by micropillar compression. Additional experimental work is necessary to identify the exact nature of the size effect and the mechanical role of interfaces in bone. Deciphering the micromechanical behavior of lamellar bone and its evolution with age, disease and treatment and its failure mechanisms on several length scales will help preventing fractures in the elderly in the future.
Resumo:
We develop statistical procedures for estimating shape and orientation of arbitrary three-dimensional particles. We focus on the case where particles cannot be observed directly, but only via sections. Volume tensors are used for describing particle shape and orientation, and we derive stereological estimators of the tensors. These estimators are combined to provide consistent estimators of the moments of the so-called particle cover density. The covariance structure associated with the particle cover density depends on the orientation and shape of the particles. For instance, if the distribution of the typical particle is invariant under rotations, then the covariance matrix is proportional to the identity matrix. We develop a non-parametric test for such isotropy. A flexible Lévy-based particle model is proposed, which may be analysed using a generalized method of moments in which the volume tensors enter. The developed methods are used to study the cell organization in the human brain cortex.
Resumo:
When an automobile passes over a bridge dynamic effects are produced in vehicle and structure. In addition, the bridge itself moves when exposed to the wind inducing dynamic effects on the vehicle that have to be considered. The main objective of this work is to understand the influence of the different parameters concerning the vehicle, the bridge, the road roughness or the wind in the comfort and safety of the vehicles when crossing bridges. Non linear finite element models are used for structures and multibody dynamic models are employed for vehicles. The interaction between the vehicle and the bridge is considered by contact methods. Road roughness is described by the power spectral density (PSD) proposed by the ISO 8608. To consider that the profiles under right and left wheels are different but not independent, the hypotheses of homogeneity and isotropy are assumed. To generate the wind velocity history along the road the Sandia method is employed. The global problem is solved by means of the finite element method. First the methodology for modelling the interaction is verified in a benchmark. Following, the case of a vehicle running along a rigid road and subjected to the action of the turbulent wind is analyzed and the road roughness is incorporated in a following step. Finally the flexibility of the bridge is added to the model by making the vehicle run over the structure. The application of this methodology will allow to understand the influence of the different parameters in the comfort and safety of road vehicles crossing wind exposed bridges. Those results will help to recommend measures to make the traffic over bridges more reliable without affecting the structural integrity of the viaduct
Resumo:
In this work, the dimensional synthesis of a spherical Parallel Manipulator (PM) with a -1S kinematic chain is presented. The goal of the synthesis is to find a set of parameters that defines the PM with the best performance in terms of workspace capabilities, dexterity and isotropy. The PM is parametrized in terms of a reference element, and a non-directed search of these parameters is carried out. First, the inverse kinematics and instantaneous kinematics of the mechanism are presented. The latter is found using the screw theory formulation. An algorithm that explores a bounded set of parameters and determines the corresponding value of global indexes is presented. The concepts of a novel global performance index and a compound index are introduced. Simulation results are shown and discussed. The best PMs found in terms of each performance index evaluated are locally analyzed in terms of its workspace and local dexterity. The relationship between the performance of the PM and its parameters is discussed, and a prototype with the best performance in terms of the compound index is presented and analyzed.
Resumo:
We consider the finite radially symmetric deformation of a circular cylindrical tube of a homogeneous transversely isotropic elastic material subject to axial stretch, radial deformation and torsion, supported by axial load, internal pressure and end moment. Two different directions of transverse isotropy are considered: the radial direction and an arbitrary direction in planes normal locally to the radial direction, the only directions for which the considered deformation is admissible in general. In the absence of body forces, formulas are obtained for the internal pressure, and the resultant axial load and torsional moment on the ends of the tube in respect of a general strain-energy function. For a specific material model of transversely isotropic elasticity, and material and geometrical parameters, numerical results are used to illustrate the dependence of the pressure, (reduced) axial load and moment on the radial stretch and a measure of the torsional deformation for a fixed value of the axial stretch.
Resumo:
En este trabajo se han analizado varios problemas en el contexto de la elasticidad no lineal basándose en modelos constitutivos representativos. En particular, se han analizado problemas relacionados con el fenómeno de perdida de estabilidad asociada con condiciones de contorno en el caso de material reforzados con fibras. Cada problema se ha formulado y se ha analizado por separado en diferentes capítulos. En primer lugar se ha mostrado el análisis del gradiente de deformación discontinuo para un material transversalmente isótropo, en particular, el modelo del material considerado consiste de una base neo-Hookeana isótropa incrustada con fibras de refuerzo direccional caracterizadas con un solo parámetro. La solución de este problema se vincula con instabilidades que dan lugar al mecanismo de fallo conocido como banda de cortante. La perdida de elipticidad de las ecuaciones diferenciales de equilibrio es una condición necesaria para que aparezca este tipo de soluciones y por tanto las inestabilidades asociadas. En segundo lugar se ha analizado una deformación combinada de extensión, inación y torsión de un tubo cilíndrico grueso donde se ha encontrado que la deformación citada anteriormente puede ser controlada solo para determinadas direcciones de las fibras refuerzo. Para entender el comportamiento elástico del tubo considerado se ha ilustrado numéricamente los resultados obtenidos para las direcciones admisibles de las fibras de refuerzo bajo la deformación considerada. En tercer lugar se ha estudiado el caso de un tubo cilíndrico grueso reforzado con dos familias de fibras sometido a cortante en la dirección azimutal para un modelo de refuerzo especial. En este problema se ha encontrado que las inestabilidades que aparecen en el material considerado están asociadas con lo que se llama soluciones múltiples de la ecuación diferencial de equilibrio. Se ha encontrado que el fenómeno de instabilidad ocurre en un estado de deformación previo al estado de deformación donde se pierde la elipticidad de la ecuación diferencial de equilibrio. También se ha demostrado que la condición de perdida de elipticidad y ^W=2 = 0 (la segunda derivada de la función de energía con respecto a la deformación) son dos condiciones necesarias para la existencia de soluciones múltiples. Finalmente, se ha analizado detalladamente en el contexto de elipticidad un problema de un tubo cilíndrico grueso sometido a una deformación combinada en las direcciones helicoidal, axial y radial para distintas geotermias de las fibras de refuerzo . In the present work four main problems have been addressed within the framework of non-linear elasticity based on representative constitutive models. Namely, problems related to the loss of stability phenomena associated with boundary value problems for fibre-reinforced materials. Each of the considered problems is formulated and analysed separately in different chapters. We first start with the analysis of discontinuous deformation gradients for a transversely isotropic material under plane deformation. In particular, the material model is an augmented neo-Hookean base with a simple unidirectional reinforcement characterised by a single parameter. The solution of this problem is related to material instabilities and it is associated with a shear band-type failure mode. The loss of ellipticity of the governing differential equations is a necessary condition for the existence of these material instabilities. The second problem involves a detailed analysis of the combined non-linear extension, inflation and torsion of a thick-walled circular cylindrical tube where it has been found that the aforementioned deformation is controllable only for certain preferred directions of transverse isotropy. Numerical results have been illustrated to understand the elastic behaviour of the tube for the admissible preferred directions under the considered deformation. The third problem deals with the analysis of a doubly fibre-reinforced thickwalled circular cylindrical tube undergoing pure azimuthal shear for a special class of the reinforcing model where multiple non-smooth solutions emerge. The associated instability phenomena are found to occur prior to the point where the nominal stress tensor changes monotonicity in a particular direction. It has been also shown that the loss of ellipticity condition that arises from the equilibrium equation and ^W=2 = 0 (the second derivative of the strain-energy function with respect to the deformation) are equivalent necessary conditions for the emergence of multiple solutions for the considered material. Finally, a detailed analysis in the basis of the loss of ellipticity of the governing differential equations for a combined helical, axial and radial elastic deformations of a fibre-reinforced circular cylindrical tube is carried out.
Resumo:
Dentro de los materiales estructurales, el magnesio y sus aleaciones están siendo el foco de una de profunda investigación. Esta investigación está dirigida a comprender la relación existente entre la microestructura de las aleaciones de Mg y su comportamiento mecánico. El objetivo es optimizar las aleaciones actuales de magnesio a partir de su microestructura y diseñar nuevas aleaciones. Sin embargo, el efecto de los factores microestructurales (como la forma, el tamaño, la orientación de los precipitados y la morfología de los granos) en el comportamiento mecánico de estas aleaciones está todavía por descubrir. Para conocer mejor de la relación entre la microestructura y el comportamiento mecánico, es necesaria la combinación de técnicas avanzadas de caracterización experimental como de simulación numérica, a diferentes longitudes de escala. En lo que respecta a las técnicas de simulación numérica, la homogeneización policristalina es una herramienta muy útil para predecir la respuesta macroscópica a partir de la microestructura de un policristal (caracterizada por el tamaño, la forma y la distribución de orientaciones de los granos) y el comportamiento del monocristal. La descripción de la microestructura se lleva a cabo mediante modernas técnicas de caracterización (difracción de rayos X, difracción de electrones retrodispersados, así como con microscopia óptica y electrónica). Sin embargo, el comportamiento del cristal sigue siendo difícil de medir, especialmente en aleaciones de Mg, donde es muy complicado conocer el valor de los parámetros que controlan el comportamiento mecánico de los diferentes modos de deslizamiento y maclado. En la presente tesis se ha desarrollado una estrategia de homogeneización computacional para predecir el comportamiento de aleaciones de magnesio. El comportamiento de los policristales ha sido obtenido mediante la simulación por elementos finitos de un volumen representativo (RVE) de la microestructura, considerando la distribución real de formas y orientaciones de los granos. El comportamiento del cristal se ha simulado mediante un modelo de plasticidad cristalina que tiene en cuenta los diferentes mecanismos físicos de deformación, como el deslizamiento y el maclado. Finalmente, la obtención de los parámetros que controlan el comportamiento del cristal (tensiones críticas resueltas (CRSS) así como las tasas de endurecimiento para todos los modos de maclado y deslizamiento) se ha resuelto mediante la implementación de una metodología de optimización inversa, una de las principales aportaciones originales de este trabajo. La metodología inversa pretende, por medio del algoritmo de optimización de Levenberg-Marquardt, obtener el conjunto de parámetros que definen el comportamiento del monocristal y que mejor ajustan a un conjunto de ensayos macroscópicos independientes. Además de la implementación de la técnica, se han estudiado tanto la objetividad del metodología como la unicidad de la solución en función de la información experimental. La estrategia de optimización inversa se usó inicialmente para obtener el comportamiento cristalino de la aleación AZ31 de Mg, obtenida por laminado. Esta aleación tiene una marcada textura basal y una gran anisotropía plástica. El comportamiento de cada grano incluyó cuatro mecanismos de deformación diferentes: deslizamiento en los planos basal, prismático, piramidal hc+ai, junto con el maclado en tracción. La validez de los parámetros resultantes se validó mediante la capacidad del modelo policristalino para predecir ensayos macroscópicos independientes en diferentes direcciones. En segundo lugar se estudió mediante la misma estrategia, la influencia del contenido de Neodimio (Nd) en las propiedades de una aleación de Mg-Mn-Nd, obtenida por extrusión. Se encontró que la adición de Nd produce una progresiva isotropización del comportamiento macroscópico. El modelo mostró que este incremento de la isotropía macroscópica era debido tanto a la aleatoriedad de la textura inicial como al incremento de la isotropía del comportamiento del cristal, con valores similares de las CRSSs de los diferentes modos de deformación. Finalmente, el modelo se empleó para analizar el efecto de la temperatura en el comportamiento del cristal de la aleación de Mg-Mn-Nd. La introducción en el modelo de los efectos non-Schmid sobre el modo de deslizamiento piramidal hc+ai permitió capturar el comportamiento mecánico a temperaturas superiores a 150_C. Esta es la primera vez, de acuerdo con el conocimiento del autor, que los efectos non-Schmid han sido observados en una aleación de Magnesio. The study of Magnesium and its alloys is a hot research topic in structural materials. In particular, special attention is being paid in understanding the relationship between microstructure and mechanical behavior in order to optimize the current alloy microstructures and guide the design of new alloys. However, the particular effect of several microstructural factors (precipitate shape, size and orientation, grain morphology distribution, etc.) in the mechanical performance of a Mg alloy is still under study. The combination of advanced characterization techniques and modeling at several length scales is necessary to improve the understanding of the relation microstructure and mechanical behavior. Respect to the simulation techniques, polycrystalline homogenization is a very useful tool to predict the macroscopic response from polycrystalline microstructure (grain size, shape and orientation distributions) and crystal behavior. The microstructure description is fully covered with modern characterization techniques (X-ray diffraction, EBSD, optical and electronic microscopy). However, the mechanical behaviour of single crystals is not well-known, especially in Mg alloys where the correct parameterization of the mechanical behavior of the different slip/twin modes is a very difficult task. A computational homogenization framework for predicting the behavior of Magnesium alloys has been developed in this thesis. The polycrystalline behavior was obtained by means of the finite element simulation of a representative volume element (RVE) of the microstructure including the actual grain shape and orientation distributions. The crystal behavior for the grains was accounted for a crystal plasticity model which took into account the physical deformation mechanisms, e.g. slip and twinning. Finally, the problem of the parametrization of the crystal behavior (critical resolved shear stresses (CRSS) and strain hardening rates of all the slip and twinning modes) was obtained by the development of an inverse optimization methodology, one of the main original contributions of this thesis. The inverse methodology aims at finding, by means of the Levenberg-Marquardt optimization algorithm, the set of parameters defining crystal behavior that best fit a set of independent macroscopic tests. The objectivity of the method and the uniqueness of solution as function of the input information has been numerically studied. The inverse optimization strategy was first used to obtain the crystal behavior of a rolled polycrystalline AZ31 Mg alloy that showed a marked basal texture and a strong plastic anisotropy. Four different deformation mechanisms: basal, prismatic and pyramidal hc+ai slip, together with tensile twinning were included to characterize the single crystal behavior. The validity of the resulting parameters was proved by the ability of the polycrystalline model to predict independent macroscopic tests on different directions. Secondly, the influence of Neodymium (Nd) content on an extruded polycrystalline Mg-Mn-Nd alloy was studied using the same homogenization and optimization framework. The effect of Nd addition was a progressive isotropization of the macroscopic behavior. The model showed that this increase in the macroscopic isotropy was due to a randomization of the initial texture and also to an increase of the crystal behavior isotropy (similar values of the CRSSs of the different modes). Finally, the model was used to analyze the effect of temperature on the crystal behaviour of a Mg-Mn-Nd alloy. The introduction in the model of non-Schmid effects on the pyramidal hc+ai slip allowed to capture the inverse strength differential that appeared, between the tension and compression, above 150_C. This is the first time, to the author's knowledge, that non-Schmid effects have been reported for Mg alloys.
Resumo:
El comportamiento mecánico de muchos materiales biológicos y poliméricos en grandes deformaciones se puede describir adecuadamente mediante formulaciones isocóricas hiperelásticas y viscoelásticas. Las ecuaciones de comportamiento elástico y viscoelástico y las formulaciones computacionales para materiales incompresibles isótropos en deformaciones finitas están ampliamente desarrolladas en la actualidad. Sin embargo, el desarrollo de modelos anisótropos no lineales y de sus correspondientes formulaciones computacionales sigue siendo un tema de investigación de gran interés. Cuando se consideran grandes deformaciones, existen muchas medidas de deformación disponibles con las que poder formular las ecuaciones de comportamiento. Los modelos en deformaciones cuadráticas facilitan la implementación en códigos de elementos finitos, ya que estas medidas surgen de forma natural en la formulación. No obstante, pueden dificultar la interpretación de los modelos y llevar a resultados pocos realistas. El uso de deformaciones logarítmicas permite el desarrollo de modelos más simples e intuitivos, aunque su formulación computacional debe ser adaptada a las exigencias del programa. Como punto de partida, en esta tesis se demuestra que las deformaciones logarítmicas representan la extensión natural de las deformaciones infinitesimales, tanto axiales como angulares, al campo de las grandes deformaciones. Este hecho permite explicar la simplicidad de las ecuaciones resultantes. Los modelos hiperelásticos predominantes en la actualidad están formulados en invariantes de deformaciones cuadráticas. Estos modelos, ya sean continuos o microestructurales, se caracterizan por tener una forma analítica predefinida. Su expresión definitiva se calcula mediante un ajuste de curvas a datos experimentales. Un modelo que no sigue esta metodología fue desarrollado por Sussman y Bathe. El modelo es sólo válido para isotropía y queda definido por una función de energía interpolada con splines, la cual reproduce los datos experimentales de forma exacta. En esta tesis se presenta su extensión a materiales transversalmente isótropos y ortótropos utilizando deformaciones logarítmicas. Asimismo, se define una nueva propiedad que las funciones de energía anisótropas deben satisfacer para que su convergencia al caso isótropo sea correcta. En visco-hiperelasticidad, aparte de las distintas funciones de energía disponibles, hay dos aproximaciones computational típicas basadas en variables internas. El modelo original de Simó está formulado en tensiones y es válido para materiales anisótropos, aunque sólo es adecuado para pequeñas desviaciones con respecto al equilibrio termodinámico. En cambio, el modelo basado en deformaciones de Reese y Govindjee permite grandes deformaciones no equilibradas pero es, en esencia, isótropo. Las formulaciones anisótropas en este último contexto son microestructurales y emplean el modelo isótropo para cada uno de los constituyentes. En esta tesis se presentan dos formulaciones fenomenológicas viscoelásticas definidas mediante funciones hiperelásticas anisótropas y válidas para grandes desviaciones con respecto al equilibrio termodinámico. El primero de los modelos está basado en la descomposición multiplicativa de Sidoroff y requiere un comportamiento viscoso isótropo. La formulación converge al modelo de Reese y Govindjee en el caso especial de isotropía elástica. El segundo modelo se define a partir de una descomposición multiplicativa inversa. Esta formulación está basada en una descripción co-rotacional del problema, es sustancialmente más compleja y puede dar lugar a tensores constitutivos ligeramente no simétricos. Sin embargo, su rango de aplicación es mucho mayor ya que permite un comportamiento anisótropo tanto elástico como viscoso. Varias simulaciones de elementos finitos muestran la gran versatilidad de estos modelos cuando se combinan con funciones hiperelásticas formadas por splines. ABSTRACT The mechanical behavior of many polymeric and biological materials may be properly modelled be means of isochoric hyperelastic and viscoelastic formulations. These materials may sustain large strains. The viscoelastic computational formulations for isotropic incompressible materials at large strains may be considered well established; for example Ogden’s hyperelastic function and the visco-hyperelastic model of Reese and Govindjee are well known models for isotropy. However, anisotropic models and computational procedures both for hyperelasticity and viscohyperelasticity are still under substantial research. Anisotropic hyperelastic models are typically based on structural invariants obtained from quadratic strain measures. These models may be microstructurallybased or phenomenological continuum formulations, and are characterized by a predefined analytical shape of the stored energy. The actual final expression of the stored energy depends on some material parameters which are obtained from an optimization algorithm, typically the Levenberg-Marquardt algorithm. We present in this work anisotropic spline-based hyperelastic stored energies in which the shape of the stored energy is obtained as part of the procedure and which (exactly in practice) replicates the experimental data. These stored energies are based on invariants obtained from logarithmic strain measures. These strain measures preserve the metric and the physical meaning of the trace and deviator operators and, hence, are interesting and meaningful for anisotropic formulations. Furthermore, the proposed stored energies may be formulated in order to have material-symmetries congruency both from a theoretical and from a numerical point of view, which are new properties that we define in this work. On the other hand, visco-hyperelastic formulations for anisotropic materials are typically based on internal stress-like variables following a procedure used by Sim´o. However, it can be shown that this procedure is not adequate for large deviations from thermodynamic equilibrium. In contrast, a formulation given by Reese and Govindjee is valid for arbitrarily large deviations from thermodynamic equilibrium but not for anisotropic stored energy functions. In this work we present two formulations for visco-hyperelasticity valid for anisotropic stored energies and large deviations from thermodynamic equilibrium. One of the formulations is based on the Sidoroff multiplicative decomposition and converges to the Reese and Govindjee formulation for the case of isotropy. However, the formulation is restricted to isotropy for the viscous component. The second formulation is based on a reversed multiplicative decomposition. This last formulation is substantially more complex and based on a corotational description of the problem. It can also result in a slightly nonsymmetric tangent. However, the formulation allows for anisotropy not only in the equilibrated and non-equilibrated stored energies, but also in the viscous behavior. Some examples show finite element implementation, versatility and interesting characteristics of the models.
Resumo:
Highlights of this paper: a method for calculating the ultimate bearing capacity at the tip of a pile is presented; ultimate bearing capacity is generalized for the modified Hoek–Brown criterion; perfect plasticity, isotropy, weightless rock media, without inertial forces, Meyerhof׳s hypothesis are considered; all the formulation can be programmed in a spreadsheet.