994 resultados para Isótopos de Pb e Nd
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Este trabalho apresenta dados geocronológicos 207Pb/206Pb de grãos detríticos de zircão obtidos pelo método de evaporação de chumbo e idades-modelo Sm-Nd (TDM) de rochas metassedimentares do Cinturão Araguaia, e discute as possíveis áreas-fonte dessas rochas, buscando investigar a história evolutiva deste cinturão no contexto da amalgamação do Gondwana. As datações em grãos detríticos de zircão de quartzitos da Formação Morro do Campo apontaram idades arqueanas (3,0-2,65 Ga) para o domínio norte (região de Xambioá) e, para o domínio sul (região de Paraíso do Tocantins), revelaram idades meso-neoproterozoicas (1,25-0,85 Ga) e, secundariamente, paleoproterozoicas (1,85-1,70 Ga), sugerindo a existência de áreas fontes distintas para os dois domínios. As idades-modelo Sm-Nd (TDM) obtidas em metapelitos (ardósias, filitos, micaxistos) dos grupos Estrondo e Tocantins apresentaram distribuição bimodal com maior frequência de idades entre 2,1 e 1,4 Ga, com moda entre 1,7 e 1,6 Ga, e outras menos frequentes entre 2,7 e 2,4 Ga, sugerindo mistura de fontes de idade Paleoproterozoica (ou até Arqueana) com fontes mais jovens, provavelmente do Meso-Neoproterozoico. Os principais candidatos a fonte para as rochas do Cinturão Araguaia seriam os segmentos crustais situados a sudeste (Cráton São Francisco, Maciço de Goiás e Arco Magmático de Goiás). Toda a sucessão de rochas sedimentares da bacia oceânica Araguaia e rochas magmáticas associadas a estes segmentos foram transportados, posteriormente, em direção à margem oriental do Cráton Amazônico, durante a tectônica principal de estruturação do Cinturão Araguaia, resultante da amalgamação do supercontinente Gondwana.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The early phase of post-collisional granitic magmatism in the Camboriu region, south Brazil, is represented by the porphyritic biotite +/- hornblende Rio Pequeno Granite (RPG; 630-620 Ma) and the younger (similar to 610 Ma), equigranular, biotite +/- muscovite Serra dos Macacos Granite (SMG). The two granite types share some geochemical characteristics, but the more felsic SMG constitutes a distinctive group not related to RPG by simple fractionation processes, as indicated by its lower FeOt, TiO2, K2O/Na2O and higher Zr Al2O3, Na2O, Ba and Sr when compared to RPG of similar SiO2 range. Sr-Nd-Pb isotopes require different sources. The SMG derives from old crustal sources, possibly related to the Paleoproterozoic protoliths of the Camboriu Complex, as indicated by strongly negative epsilon Nd-t (-23 to -24) and unradiogenic Pb (e.g., Pb-206/Pb-204 = 16.0-16.3; Pb-207/Pb-204 = 15.3-15.4) and confirmed by previous LA-MC-ICPMS data showing dominant zircon inheritance of Archean to Paleoproterozoic age. In contrast, the RPG shows less negative epsilon Nd-t (-12 to -15) and a distinctive zircon inheritance pattern with no traces of post-1.6 Ga sources. This is indicative of younger sources whose significance in the regional context is still unclear; some contribution of mantle-derived magmas is indicated by coeval mafic dykes and may account for some of the geochemical and isotopic characteristics of the least differentiated varieties of the RPG. The transcurrent tectonics seems to have played an essential role in the generation of mantle-derived magmas despite their emplacement within a low-strain zone. It may have facilitated their interaction with crustal melts which seem to be to a large extent the products of reworking of Paleoproterozoic orthogneisses from the Camboriu Complex. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The Neoproterozoic post-collisional period in southern Brazil (650-580 Ma) is characterized by substantial volumes of magma emplaced along the active shear zones that compose the Southern Brazilian Shear Belt. The early-phase syntectonic magmatism (630-610 Ma) is represented by the porphyritic, high-K, metaluminous to peraluminous Quatro Ilhas Granitoids and the younger heterogranular, slightly peraluminous Mariscal Granite. Quatro II has Granitoids include three main petrographic varieties (muscovite-biotite granodiorite mbg; biotite monzogranite - bmz: and leucogranite - lcg) that, although sharing some significant geochemical characteristics, are not strictly comagmatic, as shown by chemical and Sr-Nd-Pb isotope data. The most primitive muscovite-biotite granodiorite was produced by contamination of more mafic melts (possibly with some mantle component) with peraluminous crustal melts; the biotite monzogranite, although more felsic, has higher Ca, MgO,TiO2 and Ba, and lower K2O, FeOt, Sr and Rb contents, possibly reflecting some mixing with coeval mafic magmas of tholeiitic affinity; the leucogranite may be derived from pure crustal melts. The Mariscal Granite is formed by two main granite types which occur intimately associated in the same pluton, one with higher K (5-6.5 wt.% K2O) high Rb and lower CaO, Na2O, Ba and Zr as compared to the other (3-5 wt.% of K2O). The two Mariscal Granite varieties have compositional correspondence with fine-grained granites (fgg) that occur as tabular bodies which intruded the Quatro Ilhas Granoitoids before they were fully crystallized, and are inferred to correspond to the Mariscal Granite feeders, an interpretation that is reinforced by similar U-Pb zircon crystallization ages. The initial evolution of the post-collisional magmatism, marked by the emplacement of the Quatro Ilhas Granitoids varieties, activated sources that produced mantle and crustal magmas whose emplacement was controlled both by flat-lying and transcurrent structures. The transition from thrust to transcurrent-related tectonics coincides with the increase in the proportion of crustal-derived melts. The transcurrent tectonics seems to have played an essential role in the generation of mantle-derived magmas and may have facilitated their interaction with crustal melts which seem to be to a large extent the products of reworking of orthogneiss protoliths. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The volcanic rocks of the Rhön area (Central European Volcanic Province, Germany) belong to a moderately alkali basaltic suite that is associated with minor tephriphonolites, phonotephrites, tephrites, phonolites and trachytes. Based on isotope sytematics (87Sr/86Sr: 0.7033–0.7042; 143Nd/144Nd: 0.51279–0.51287; 206Pb/204Pb: 19.1–19.5), the inferred parental magmas formed by variable degrees of partial melting of a common asthenospheric mantle source (EAR: European Asthenospheric Reservoir of Cebriá and Wilson, 1995). Tephrites, tephriphonolites, phonotephrites, phonolites and trachytes show depletions and enrichments in some trace elements (Sr, Ba, Nb, Zr, Y) indicating that they were generated by broadly similar differentiation processes that were dominated by fractionation of olivine, clinopyroxene, amphibole, apatite and titaniferous magnetite ± plagioclase ± alkalifeldspar. The fractionated samples seem to have evolved by two distinct processes. One is characterized by pure fractional crystallization indicated by increasing Nb (and other incompatible trace element) concentrations at virtually constant 143Nd/144Nd ~ 0.51280 and 87Sr/86Sr ~ 0.7035. The other process involved an assimilation–fractional crystallization (AFC) process where moderate assimilation to crystallization rates produced evolved magmas characterized by higher Nb concentrations at slightly lower 143Nd/144Nd down to 0.51275. Literature data for some of the evolved rocks show more variable 87Sr/86Sr ranging from 0.7037 to 0.7089 at constant 143Nd/144Nd ~ 0.51280. These features may result from assimilation of upper crustal rocks by highly differentiated low-Sr (< 100 ppm Sr) lavas. However, based on the displacement of the differentiated rocks from this study towards lower 143Nd/144Nd ratios and modeled AFC processes in 143Nd/144Nd vs. 87Sr/86Sr and 207Pb/204Pb vs. 143Nd/144Nd space assimilation of lower crustal rocks seems more likely. The view that assimilation of lower crustal rocks played a role is confirmed by high-precision double-spike Pb isotope data that reveal higher 207Pb/204Pb ratios (15.62–15.63) in the differentiated rocks than in the primitive basanites (15.58–15.61). This is compatible with incorporation of radiogenic Pb from lower crustal xenoliths (207Pb/204Pb: 15.63–15.69) into the melt. However, 206Pb/204Pb ratios are similar for the differentiated rocks (19.13–19.35) and the primitive basanites (19.12–19.55) implying that assimilation involved an ancient crustal end member with a higher U/Pb ratio than the mantle source of the basanites. In addition, alteration-corrected δ18O values of the differentiated rocks range from c. 5 to 7‰ which is the same range as observed in the primitive alkaline rocks. This study confirms previous interpretations that highlighted the role of AFC processes in the evolution of alkaline volcanic rocks in the Rhön area of the Central European Volcanic Province.
Resumo:
Basaltic rocks recovered from three drill sites in the western Pacific during Ocean Drilling Program Leg 129 have fairly distinct Sr, Nd, and Pb isotopic compositions. The Cretaceous alkali olivine dolerites from Site 800 in the northern part of Pigafetta Basin have fairly low 87Sr/86Sri (0.70292-0.70320) and 143Nd/144Ndi (0.51277-0.51281) and high present-day Pb isotopic ratios (206Pb/204Pb = 20.53-21.45; 207Pb/204Pb = 15.70-15.77; 208Pb/204Pb = 40.02-40.68). The Middle Jurassic tholeiites from Site 801 in the southern part of the basin have low 87Sr/86Sri (0.70237-0.70248), high 143Nd/144Ndi (0.51298-0.51322), and moderate present-day Pb isotopic ratios (206Pb/204Pb = 18.20-19.12; 207Pb/204Pb = 15.47-15.60; 208Pb/204Pb = 37.56-38.18); isotopic compositions of the alkali olivine basalts overlying the tholeiites fall between those of the tholeiites and Site 800 dolerites. The Cretaceous tholeiites from Site 802 in the East Mariana Basin have high 87Sr/86Sri (0.70360-0.70372), fairly low 143Nd/144Ndi (0.51277-0.51280), and fairly low and homogeneous present-day Pb isotopic ratios (206Pb/204Pb = 18.37-18.39; 207Pb/204Pb = 15.49-15.51; 208Pb/204Pb = 38.34-38.39). Isotopic compositions of Site 801 tholeiites are indistinguishable from those of modern mid-ocean ridge basalts, consistent with the proposal that these tholeiites are a part of the oldest Pacific crust. The diverse isotopic compositions of the younger basalts appear to be the result of Jurassic Pacific plate migration over the geologically anomalous south-central Pacific region, wherein they acquired their distinct isotopic compositions. The anomalous region was volcanically more active during the Cretaceous than at present.
Resumo:
The isotopic composition of Nd in present-day deep waters of the central and northeastern Atlantic Ocean is thought to fingerprint mixing of North Atlantic Deep Water with Antarctic Bottom Water. The central Atlantic Romanche and Vema Fracture Zones are considered the most important pathways for deep water exchange between the western and eastern Atlantic basins today. We present new Nd isotope records of the deepwater evolution in the fracture zones obtained from ferromanganese crusts, which are inconsistent with simple water mass mixing alone prior to 3 Ma and require additional inputs from other sources. The new Pb isotope time series from the fracture zones are inexplicable by simple mixing of North Atlantic Deep Water and Antarctic Bottom Water for the entire past 33 Myr. The distinct and relatively invariable Nd and Pb isotope records of deep waters in the fracture zones appear instead to have been controlled to a large extent by contributions from Saharan dust and the Orinoco/Amazon Rivers. Thus the previously observed similarity of Nd and Pb isotope time series from the western and eastern North Atlantic basins is better explainable by direct supply of Labrador Seawater to the eastern basin via a northern pathway rather than by advection of North Atlantic Deep Water via the Romanche and Vema Fracture Zones.