999 resultados para Iron Chelating Agents
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The well-known polymeric precursor route is a simple and low-cost sol-gel method based on the preparation of an aqueous precursor solution of metals followed by the addition of a water-soluble polymer. This method consists of a polyesterification process between a metal chelate complex by using a hydroxycarboxylic acid and a polyhydroxy alcohol. In this work, citric acid (CA), tartaric acid (TA) and ethylenediaminetetraacetic acid (EDTA) are used as the hydroxycarboxylic acid and ethylene glycol (EG) is used as the polyhydroxy alcohol. The effects of the precursor pH solution, time and temperature of polymerization step as well as the combination of different chelating agents in order to obtain nanoscopic YBa2Cu3Oy samples were traced. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Violacein is a violet pigment isolated from many gram-negative bacteria, especially from Chromobacterium violaceum, a betaproteobacterium found in the Amazon River in Brazil. It has potential medical applications as an antibacterial, fungicide, anti-tryptanocidal, anti-ulcerogenic and anti-cancer drug, among others. Furthermore, its pro-oxidant activity has been suggested, but only in two specific tumor lineages. Thus, in the present study, the prooxidant effects of violacein were investigated in both normal and tumor cells, seeking to evaluate the cell responses. The evaluation of violacein cytotoxicity using the Trypan blue dye exclusion method indicated that CHO-K1 cells were more resistant than tumor HeLa cells. The oxidative stress induced by violacein was manifested as an increase in intracellular SOD activity in CHO-K1 and MRC-5 cells at a specific concentration range. Nevertheless, a decrease was detected specifically at 6-12 μM in HeLa and MRC-5 cells. Interestingly, the increase in SOD activity was not followed by a concomitant increase in catalase activity. Regarding to oxidative stress biomarkers, increased protein carbonylation and lipid hydroperoxides levels were detected respectively in CHO-K1 and MRC-5 cells treated with violacein at 1.5-3 μM and 3 μM, which may be an evidence that this compound causes oxidative stress specifically in these conditions. Additionally, it is believed that the decline in cell viability observed in MRC-5 cells and HeLa treated with violacein at 6-12 M is due to mechanisms not related to oxidative stress. Moreover, the results suggested that violacein might cause oxidative stress by increasing endogenous levels of O2 -, since the occurrence of an expressive change in SOD activity. In addition, in order to evaluate the antioxidant activity of violacein in the absence of a biological system, the total antioxidant and iron chelating activity were evaluated, so that antioxidant activities were detected at 30 and 60 μM of violacein. Altogether, the results indicate that although oxidative stress is triggered by incubation with violacein, it did not seem to be high enough to cause serious damage to cell biomolecules in HeLa cells and only at specific concentrations in CHOK-1 and MRC-5 cells. Comparing the results obtained in cell culture and the in vitro antioxidant activity evaluation, the results confirmed that violacein presents opposing oxidant features when in presence or absence of a biological system and the antioxidant character only occurs at high concentrations of the pigment.
Resumo:
Invertase was immobilized on aminopropyl silica (APTS-SiO2) activated with humic substances (APTS-SiO2-HS) and on aminopropyl silica activated with glutaraldehyde (APTS-SiO2-GA). The resulting activity of both systems was compared. Humic substances (HS) used for the activation of the silica were extracted from soil of Cananéia, São Paulo State, Brazil, according to the procedure recommended by the International Humic Substances Society. Activity was determined by measuring the rate of formation of reduced sugars using the reaction with dinitrosalicylic acid (DNS). The amount of HS bound on the APTS-SiO2 was equal to 50 mg. The maximum amount of invertase immobilized on APTS-SiO2-HS was 15200 U/g while in the system APTS-SiO2-GA it was 13400 U/g. The experimental enzymatic activity was 3700 and 3300 U/g, for the systems APTS-SiO2-HS and APTS-SiO2-GA, respectively. Considering the increased amount and activity of immobilized enzyme compared with the glutaraldehyde method, it was concluded that this technique opens a new perspective in the preparation of supports for enzyme immobilization employing humic substances. © Springer-Verlag 2000.
Resumo:
The purpose of this study was to carry out a scanning electron microscopic (SEM) analysis of the cleaning qualities and smear layer removal from root canal walls, instrumented and irrigated with 2.5% NaOCl, 2.0% chlorhexidine and saline solutions. Fifty extracted teeth were used in this study. All teeth were radiographed to determine the existence of a single canal. The crowns were cut at the cervical limit and the root canals were instrumented with K-type files up to size 45. During root canal preparation, irrigations were made with the different solutions being evaluated: Group 1: 2.5% NaOCl (10 roots); Group 2: 2.5% NaOCl and 17% EDTA for 2 minute (10 roots); Group 3: 2.0% chlorhexidine (10 roots); Group 4: 2.0% chlorhexidine and 17% EDTA for 2 minutes (10 roots); Group 5: saline solution (5 roots); Group 6: saline solution and 17% EDTA for 2 minutes (5 roots). After instrumentation, the canals were irrigated with each one of the solutions and the roots were cut in the buccolingual direction for SEM analysis, at the cervical, middle and apical thirds, to ascertain the presence or absence of smear layer and debris. SEM analysis was performed by three calibrated examiners and scores were submitted to Kruskal-Wallis test at the significance level of p = 5%. Results showed that the use of 17% EDTA decreased the smear layer significantly (p < 0.05) for all evaluated solutions in all thirds. When EDTA was not used, a significantly higher quantity of smear layer on the apical third was observed only in the NaOCl groups. The use of 17% EDTA was significant for debris removal except for the chlorhexidine groups. The following conclusion could be drawn: the use of 17% EDTA was necessary to enhance cleanness of the root canals.
Resumo:
Root debridement generates a smear layer which contains microorganisms and toxins that could interfere in periodontal healing. For this reason, different substances have been used to remove it and to expose collagen fibers at the tooth surface. Blood element adhesion to demineralized roots and clot stabilization by collagen fibers are extremely important for the success of periodontal surgery. The aim of this study was to evaluate the different patterns of blood element adsorption and adhesion to root surfaces only irrigated with distilled water and after application of a manipulated or an industrialized EDTA gel. Thirty samples were planed, equally divided into three groups and treated with distilled water (control), a manipulated EDTA gel or an industrialized one. Immediately after, samples were exposed to fresh blood and prepared for scanning electron microscopy. Untreated planed dentin presented the best results with blood cells entrapped in a thick web of fibrin. In the manipulated EDTA group, the web of fibrin was thick with sparse blood elements. The worst result was seen with the industrialized EDTA group, in which no blood elements could be seen. Statistical difference was obtained between control and industrialized EDTA groups. Surfaces only irrigated presented the most organized fibrin network and cell entrapment.
Resumo:
Objective: The purpose of this in vitro study was to investigate the efficacy of EDTA gel preparation, associated with texapon detergent (EDTA-T), for removing the smear layer at human root surfaces. Method and materials: An experimental smear layer was produced by scaling using periodontal curettes, and the root surfaces were etched with the following concentrations of EDTA-T: 5%, 10%, 15%, 20%, 24%, and negative control (saline solution) for 1, 2, or 3 minutes using both passive and active methods. The surfaces were evaluated by scanning electron microscopy, and photomicrographs were evaluated in relation to smear removal. Results: All EDTA-T groups were more effective than the control group (P < .0001). EDTA-T at 15% was more effective when applied by the passive method, although this difference was not observed for the active method. The active method was statistically better than the passive method (P < .0001). Conclusion: The etching of the root surface with EDTA-T gel by active application, independently of the other factors evaluated, was effective for smear layer removal.
Resumo:
A study was conducted to evaluate in vitro the effect of root surface conditioning with basic fibroblast growth factor (b-FGF) on morphology and proliferation of fibroblasts. Three experimental groups were used: non-treated, and treated with 50 microg or 125 microg b-FGF/ml. The dentin samples in each group were divided into subgroups according to the chemical treatment received before application of b-FGF: none, or conditioned with tetracycline-HCl or EDTA. After contact with b-FGF for 5 min, the samples were incubated for 24 h with 1 ml of culture medium containing 1 x 10(5) cells/ml plus 1 ml of culture medium alone. The samples were then subjected to routine preparation for SEM, and random fields were photographed. Three calibrated and blind examiners performed the assessment of morphology and density according to two index systems. Classification and regression trees indicated that the root surfaces treated with 125 microg b-FGF and previously conditioned with tetracycline-HCl or EDTA presented a morphology more suggestive of cellular adhesion and viability (P = 0.004). The density of fibroblasts on samples previously conditioned with EDTA, regardless of treatment with b-FGF, was significantly higher than in the other groups (P < 0.001). The present findings suggest that topical application of b-FGF has a positive influence on both the density and morphology of fibroblasts.
Resumo:
Bone decalcification is a time-consuming process. It takes weeks and preservation of the tissue structure depends on the quality and velocity of the demineralization process. In the present study, a decalcification methodology was adapted using microwaving to accelerate the decalcification of rat bone for electron microscopic analysis. The ultrastructure of the bone decalcified by microwave energy was observed. Wistar rats were perfused with paraformaldehyde and maxillary segments were removed and fixed in glutaraldehyde. Half of specimens were decalcified by conventional treatment with immersion in Warshawsky solution at 4oC during 45 days, and the other half of specimens were placed into the beaker with 20 mL of the Warshawsky solution in ice bath and thereafter submitted to irradiation in a domestic microwave oven (700 maximum power) during 20 s/350 W/±37°C. In the first day, the specimens were irradiated 9 times and stored at 40°C overnight. In the second day, the specimens were irradiated 20 times changing the solution and the ice after each bath. After decalcification, some specimens were postfixed in osmium tetroxide and others in osmium tetroxide and potassium pyroantimonate. The specimens were observed under transmission electron microscopy. The results showed an increase in the decalcification rate in the specimens activated by microwaving and a reduction of total experiment time from 45 days in the conventional method to 48 hours in the microwave-aided method.
Resumo:
The aim of this study was to establish the parameters of concentration, time and mode of application of citric acid and sodium citrate in relation to root conditioning. A total of 495 samples were obtained and equally distributed among 11 groups (5 for testing different concentrations of citric acid, 5 for testing different concentrations of sodium citrate and 1 control group). After laboratorial processing, the samples were analyzed under scanning electron microscopy. A previously calibrated and blind examiner evaluated micrographs of the samples. Non-parametric statistical analysis was performed to analyze the data obtained. Brushing 25% citric acid for 3 min, promoted greater exposure of collagen fibers in comparison with the brushing of 1% citric acid for 1 minute and its topical application at 1% for 3 min. Sodium citrate exposed collagen fibers in a few number of samples. Despite the lack of statistical significance, better results for collagen exposure were obtained with brushing application of 25% citric acid for 3 min than with other application parameter. Sodium citrate produced a few number of samples with collagen exposure, so it is not indicated for root conditioning.
Resumo:
Aim: Root conditioning is aimed at smear layer removal and at dental matrix collagen exposure, which may promote periodontal regeneration. This in vitro study assessed smear layer removal, collagen fiber exposure and the influence of PRP (platelet-rich plasma) application on adhesion of blood cells to the root surface using scanning electron microscopy (SEM). Materials and methods: Scaled root samples (n = 160) were set in five groups and conditioned with: group I - control group (saline solution); group II (EDTA 24%); group III (citric acid 25%); group IV (tetracycline hydrochloride 50 mg/ml); group V (sodium citrate 30%). Eighty samples were assessed using the root surface modification index (RSMI). The other eighty samples were set in two groups. The first group (n = 40) received PRP gel application with a soft brush and the second group (n = 40) received PRP application and then a blood drop. The fibrin clot formation was assessed in the first group and the blood cells adhesion was assessed in the second group using the BEAI (blood elements adhesion index). A previously trained, calibrated, and blind examiner evaluated photomicrographs. Statistical analysis was performed using the Kruskal-Wallis's and Dunn's tests. Results: Group III attained the best results for RSMI and BEAI. Moreover, it was the only group showing fibrin clot formation. Conclusion: Citric acid was the most efficient conditioner for smear layer removal, collagen fiber exposure and blood cell adhesion. Moreover, it was the only group showing fibrin clot formation after PRP application. Clinical significance: This study demonstrated that root conditioning followed by PRP application may favor blood cell adhesion on root surface which may optimize periodontal healing.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Introduction: The oxidative process plays a fundamental role in the pathophysiology of sickle cell anemia (SCA), and population and environmental characteristics may influence redox balance. The aim of this study was to evaluate lipid peroxidation and antioxidant capacity in Brazilian Hb S carriers undergoing different therapies.MethodsBlood samples from 270 individuals were analyzed (Hb SS, n=68; Hb AS, n=53, and Hb AA, n=149). Hemoglobin genotypes were assessed through cytological, electrophoretic, chromatographic, and molecular methods. Plasma lipid peroxidation and antioxidant capacity were measured by spectrophotometric methods.ResultsPatients with SCA who used iron-chelating drugs combined with hydroxyurea, associated with regular transfusions, showed lower levels of TBARS (P <= 0.05), higher levels of TEAC (P <= 0.01), and lower TBARS/TEAC ratio (R=255.8). The redox profile of Hb AS subjects was not statistically different (P>0.05) from that of Hb AA subjects.ConclusionThe data suggest that oxidative stress is lower in the patients with SCA who received regular blood transfusions associated with the combined use of HU and iron chelators than the group received only HU. The redox system of the Hb AS carriers is compatible with the control group.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objectives. To evaluate if the incorporation of antimicrobial compounds to chelating agents or the use of chelating agents with antimicrobial activity as 7% maleic acid and peracetic acid show similar disinfection ability in comparison to conventional irrigants as sodium hypochlorite or iodine potassium iodide against biofilms developed on dentin. Materials and methods. The total bio-volume of live cells, the ratio of live cells and the substratum coverage of dentin infected intra-orally and treated with the irrigant solutions: MTAD, Qmix, Smear Clear, 7% maleic acid, 2% iodine potassium iodide, 4% peracetic acid, 2.5% and 5.25% sodium hypochlorite was measured by using confocal microscopy and the live/dead technique. Five samples were used for each irrigant solution. Results. Several endodontic irrigants containing antimicrobials as clorhexidine (Qmix), cetrimide (Smear Clear), maleic acid, iodine compounds or antibiotics (MTAD) lacked an effective antibiofilm activity when the dentin was infected intra-orally. The irrigant solutions 4% peracetic acid and 2.5–5.25% sodium hypochlorite decrease significantly the number of live bacteria in biofilms, providing also cleaner dentin surfaces (p < 0.05). Conclusions. Several chelating agents containing antimicrobials could not remove nor kill significantly biofilms developed on intra-orally infected dentin, with the exception of sodium hypochlorite and 4% peracetic acid. Dissolution ability is mandatory for an appropriate eradication of biofilms attached to dentin.