993 resultados para Interphase Boundary Structure
Resumo:
Ventilation of the boundary layer has an important effect on local and regional air quality and is a prerequisite for long-range pollution transport. Once in the free troposphere, pollutants can alter the chemical composition of the troposphere and impact on the Earth's radiative forcing. Idealised baroclinic life cycles, LC1 and LC2, have been simulated in a three-dimensional dry hemispheric model in the presence of boundary-layer turbulent fluxes. A passive tracer is added to the simulations to represent pollution emitted at, or near, the surface. A simple conveyor-belt diagnostic is developed to objectively identify regions of the boundary layer that can be ventilated by either warm or cold conveyor belts. Transport of pollutants within and above the boundary layer is examined on synoptic scales. Three different physical mechanisms are found to interact with each other to ventilate pollutants out of the boundary layer. These mechanisms are turbulent mixing within the boundary layer, horizontal advection due to Ekman convergence and divergence within the boundary layer, and advection by the warm conveyor belt. The mass of tracer ventilated by the two life cycles is remarkably similar given the differences in frontal structure, suggesting that the large-scale baroclinicity is an effective constraint on ventilation.
Resumo:
Mid-latitude weather systems are key contributors to the transport of atmospheric water vapour, but less is known about the role of the boundary layer in this transport. We expand a conceptual model of dry boundary-layer structure under synoptic systems to include moist processes, using idealised simulations of cyclone waves to investigate the three-way interaction between the boundary layer, atmospheric moisture and large-scale dynamics. Forced by large-scale thermal advection, boundary-layer structures develop over large areas, analogous to the daytime convective boundary layer, the nocturnal stable boundary layer and transitional regimes between these extremes.
Resumo:
The NERC UK SOLAS-funded Reactive Halogens in the Marine Boundary Layer (RHaMBLe) programme comprised three field experiments. This manuscript presents an overview of the measurements made within the two simultaneous remote experiments conducted in the tropical North Atlantic in May and June 2007. Measurements were made from two mobile and one ground-based platforms. The heavily instrumented cruise D319 on the RRS Discovery from Lisbon, Portugal to São Vicente, Cape Verde and back to Falmouth, UK was used to characterise the spatial distribution of boundary layer components likely to play a role in reactive halogen chemistry. Measurements onboard the ARSF Dornier aircraft were used to allow the observations to be interpreted in the context of their vertical distribution and to confirm the interpretation of atmospheric structure in the vicinity of the Cape Verde islands. Long-term ground-based measurements at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente were supplemented by long-term measurements of reactive halogen species and characterisation of additional trace gas and aerosol species during the intensive experimental period. This paper presents a summary of the measurements made within the RHaMBLe remote experiments and discusses them in their meteorological and chemical context as determined from these three platforms and from additional meteorological analyses. Air always arrived at the CVAO from the North East with a range of air mass origins (European, Atlantic and North American continental). Trace gases were present at stable and fairly low concentrations with the exception of a slight increase in some anthropogenic components in air of North American origin, though NOx mixing ratios during this period remained below 20 pptv. Consistency with these air mass classifications is observed in the time series of soluble gas and aerosol composition measurements, with additional identification of periods of slightly elevated dust concentrations consistent with the trajectories passing over the African continent. The CVAO is shown to be broadly representative of the wider North Atlantic marine boundary layer; measurements of NO, O3 and black carbon from the ship are consistent with a clean Northern Hemisphere marine background. Aerosol composition measurements do not indicate elevated organic material associated with clean marine air. Closer to the African coast, black carbon and NO levels start to increase, indicating greater anthropogenic influence. Lower ozone in this region is possibly associated with the increased levels of measured halocarbons, associated with the nutrient rich waters of the Mauritanian upwelling. Bromide and chloride deficits in coarse mode aerosol at both the CVAO and on D319 and the continuous abundance of inorganic gaseous halogen species at CVAO indicate significant reactive cycling of halogens. Aircraft measurements of O3 and CO show that surface measurements are representative of the entire boundary layer in the vicinity both in diurnal variability and absolute levels. Above the inversion layer similar diurnal behaviour in O3 and CO is observed at lower mixing ratios in the air that had originated from south of Cape Verde, possibly from within the ITCZ. ECMWF calculations on two days indicate very different boundary layer depths and aircraft flights over the ship replicate this, giving confidence in the calculated boundary layer depth.
Resumo:
We study the effect of varying the boundary condition on: the spectral function of a finite one-dimensional Hubbard chain, which we compute using direct (Lanczos) diagonalization of the Hamiltonian. By direct comparison with the two-body response functions and with the exact solution of the Bethe ansatz equations, we can identify both spinon and holon features in the spectra. At half-filling the spectra have the well-known structure of a low-energy holon band and its shadow-which spans the whole Brillouin zone-and a spinon band present for momenta less than the Fermi momentum. Features related to the twisted boundary condition are cusps in the spinon band. We show that the spectral building principle, adapted to account for both the finite system size and the twisted boundary condition, describes the spectra well in terms of single spinon and holon excitations. We argue that these finite-size effects are a signature of spin-charge separation and that their study should help establish the existence and nature of spin-charge separation in finite-size systems.
Resumo:
The one-dimensional variational assimilation of vertical temperature information in the presence of a boundary-layer capping inversion is studied. For an optimal analysis of the vertical temperature profile, an accurate representation of the background error covariances is essential. The background error covariances are highly flow-dependent due to the variability in the presence, structure and height of the boundary-layer capping inversion. Flow-dependent estimates of the background error covariances are shown by studying the spread in an ensemble of forecasts. A forecast of the temperature profile (used as a background state) may have a significant error in the position of the capping inversion with respect to observations. It is shown that the assimilation of observations may weaken the inversion structure in the analysis if only magnitude errors are accounted for as is the case for traditional data assimilation methods used for operational weather prediction. The positional error is treated explicitly here in a new data assimilation scheme to reduce positional error, in addition to the traditional framework to reduce magnitude error. The distribution of the positional error of the background inversion is estimated for use with the new scheme.
Resumo:
We report the characteristics of the three-dimensional, time evolving, atmospheric boundary layer that develops beneath an idealised, dry, baroclinic weather system. The boundary-layer structure is forced by thermal advection associated with the weather system. Large positive heat fluxes behind the cold front drive a vigorous convective boundary layer, whereas moderate negative heat fluxes in the warm sector between the cold and warm fronts generate shallow, stably stratified or neutral boundary layers. The forcing of the boundary-layer structure is quantified by forming an Eulerian mass budget integrated over the depth of the boundary layer. The mass budget indicates that tropospheric air is entrained into the boundary layer both in the vicinity of the high-pressure centre, and behind the cold front. It is then transported horizontally within the boundary layer and converges towards the cyclone's warm sector, whence it is ventilated out into the troposphere. This cycling of air is likely to be important for the ventilation of pollution out of the boundary layer, and for the transformation of the properties of large-scale air masses.
Resumo:
We present a novel topology of the radial basis function (RBF) neural network, referred to as the boundary value constraints (BVC)-RBF, which is able to automatically satisfy a set of BVC. Unlike most existing neural networks whereby the model is identified via learning from observational data only, the proposed BVC-RBF offers a generic framework by taking into account both the deterministic prior knowledge and the stochastic data in an intelligent manner. Like a conventional RBF, the proposed BVC-RBF has a linear-in-the-parameter structure, such that it is advantageous that many of the existing algorithms for linear-in-the-parameters models are directly applicable. The BVC satisfaction properties of the proposed BVC-RBF are discussed. Finally, numerical examples based on the combined D-optimality-based orthogonal least squares algorithm are utilized to illustrate the performance of the proposed BVC-RBF for completeness.
Resumo:
Strong vertical gradients at the top of the atmospheric boundary layer affect the propagation of electromagnetic waves and can produce radar ducts. A three-dimensional, time-dependent, nonhydrostatic numerical model was used to simulate the propagation environment in the atmosphere over the Persian Gulf when aircraft observations of ducting had been made. A division of the observations into high- and low-wind cases was used as a framework for the simulations. Three sets of simulations were conducted with initial conditions of varying degrees of idealization and were compared with the observations taken in the Ship Antisubmarine Warfare Readiness/Effectiveness Measuring (SHAREM-115) program. The best results occurred with the initialization based on a sounding taken over the coast modified by the inclusion of data on low-level atmospheric conditions over the Gulf waters. The development of moist, cool, stable marine internal boundary layers (MIBL) in air flowing from land over the waters of the Gulf was simulated. The MIBLs were capped by temperature inversions and associated lapses of humidity and refractivity. The low-wind MIBL was shallower and the gradients at its top were sharper than in the high-wind case, in agreement with the observations. Because it is also forced by land–sea contrasts, a sea-breeze circulation frequently occurs in association with the MIBL. The size, location, and internal structure of the sea-breeze circulation were realistically simulated. The gradients of temperature and humidity that bound the MIBL cause perturbations in the refractivity distribution that, in turn, lead to trapping layers and ducts. The existence, location, and surface character of the ducts were well captured. Horizontal variations in duct characteristics due to the sea-breeze circulation were also evident. The simulations successfully distinguished between high- and low-wind occasions, a notable feature of the SHAREM-115 observations. The modeled magnitudes of duct depth and strength, although leaving scope for improvement, were most encouraging.
Resumo:
The NERC UK SOLAS-funded Reactive Halogens in the Marine Boundary Layer (RHaMBLe) programme comprised three field experiments. This manuscript presents an overview of the measurements made within the two simultaneous remote experiments conducted in the tropical North Atlantic in May and June 2007. Measurements were made from two mobile and one ground-based platforms. The heavily instrumented cruise D319 on the RRS Discovery from Lisbon, Portugal to São Vicente, Cape Verde and back to Falmouth, UK was used to characterise the spatial distribution of boundary layer components likely to play a role in reactive halogen chemistry. Measurements onboard the ARSF Dornier aircraft were used to allow the observations to be interpreted in the context of their vertical distribution and to confirm the interpretation of atmospheric structure in the vicinity of the Cape Verde islands. Long-term ground-based measurements at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente were supplemented by long-term measurements of reactive halogen species and characterisation of additional trace gas and aerosol species during the intensive experimental period. This paper presents a summary of the measurements made within the RHaMBLe remote experiments and discusses them in their meteorological and chemical context as determined from these three platforms and from additional meteorological analyses. Air always arrived at the CVAO from the North East with a range of air mass origins (European, Atlantic and North American continental). Trace gases were present at stable and fairly low concentrations with the exception of a slight increase in some anthropogenic components in air of North American origin, though NOx mixing ratios during this period remained below 20 pptv (note the non-IUPAC adoption in this manuscript of pptv and ppbv, equivalent to pmol mol−1 and nmol mol−1 to reflect common practice). Consistency with these air mass classifications is observed in the time series of soluble gas and aerosol composition measurements, with additional identification of periods of slightly elevated dust concentrations consistent with the trajectories passing over the African continent. The CVAO is shown to be broadly representative of the wider North Atlantic marine boundary layer; measurements of NO, O3 and black carbon from the ship are consistent with a clean Northern Hemisphere marine background. Aerosol composition measurements do not indicate elevated organic material associated with clean marine air. Closer to the African coast, black carbon and NO levels start to increase, indicating greater anthropogenic influence. Lower ozone in this region is possibly associated with the increased levels of measured halocarbons, associated with the nutrient rich waters of the Mauritanian upwelling. Bromide and chloride deficits in coarse mode aerosol at both the CVAO and on D319 and the continuous abundance of inorganic gaseous halogen species at CVAO indicate significant reactive cycling of halogens. Aircraft measurements of O3 and CO show that surface measurements are representative of the entire boundary layer in the vicinity both in diurnal variability and absolute levels. Above the inversion layer similar diurnal behaviour in O3 and CO is observed at lower mixing ratios in the air that had originated from south of Cape Verde, possibly from within the ITCZ. ECMWF calculations on two days indicate very different boundary layer depths and aircraft flights over the ship replicate this, giving confidence in the calculated boundary layer depth.
Resumo:
The vertical structure of the relationship between water vapor and precipitation is analyzed in 5 yr of radiosonde and precipitation gauge data from the Nauru Atmospheric Radiation Measurement (ARM) site. The first vertical principal component of specific humidity is very highly correlated with column water vapor (CWV) and has a maximum of both total and fractional variance captured in the lower free troposphere (around 800 hPa). Moisture profiles conditionally averaged on precipitation show a strong association between rainfall and moisture variability in the free troposphere and little boundary layer variability. A sharp pickup in precipitation occurs near a critical value of CWV, confirming satellite-based studies. A lag–lead analysis suggests it is unlikely that the increase in water vapor is just a result of the falling precipitation. To investigate mechanisms for the CWV–precipitation relationship, entraining plume buoyancy is examined in sonde data and simplified cases. For several different mixing schemes, higher CWV results in progressively greater plume buoyancies, particularly in the upper troposphere, indicating conditions favorable for deep convection. All other things being equal, higher values of lower-tropospheric humidity, via entrainment, play a major role in this buoyancy increase. A small but significant increase in subcloud layer moisture with increasing CWV also contributes to buoyancy. Entrainment coefficients inversely proportional to distance from the surface, associated with mass flux increase through a deep lower-tropospheric layer, appear promising. These yield a relatively even weighting through the lower troposphere for the contribution of environmental water vapor to midtropospheric buoyancy, explaining the association of CWV and buoyancy available for deep convection.
Resumo:
Urban boundary layers (UBLs) can be highly complex due to the heterogeneous roughness and heating of the surface, particularly at night. Due to a general lack of observations, it is not clear whether canonical models of boundary layer mixing are appropriate in modelling air quality in urban areas. This paper reports Doppler lidar observations of turbulence profiles in the centre of London, UK, as part of the second REPARTEE campaign in autumn 2007. Lidar-measured standard deviation of vertical velocity averaged over 30 min intervals generally compared well with in situ sonic anemometer measurements at 190 m on the BT telecommunications Tower. During calm, nocturnal periods, the lidar underestimated turbulent mixing due mainly to limited sampling rate. Mixing height derived from the turbulence, and aerosol layer height from the backscatter profiles, showed similar diurnal cycles ranging from c. 300 to 800 m, increasing to c. 200 to 850 m under clear skies. The aerosol layer height was sometimes significantly different to the mixing height, particularly at night under clear skies. For convective and neutral cases, the scaled turbulence profiles resembled canonical results; this was less clear for the stable case. Lidar observations clearly showed enhanced mixing beneath stratocumulus clouds reaching down on occasion to approximately half daytime boundary layer depth. On one occasion the nocturnal turbulent structure was consistent with a nocturnal jet, suggesting a stable layer. Given the general agreement between observations and canonical turbulence profiles, mixing timescales were calculated for passive scalars released at street level to reach the BT Tower using existing models of turbulent mixing. It was estimated to take c. 10 min to diffuse up to 190 m, rising to between 20 and 50 min at night, depending on stability. Determination of mixing timescales is important when comparing to physico-chemical processes acting on pollutant species measured simultaneously at both the ground and at the BT Tower during the campaign. From the 3 week autumnal data-set there is evidence for occasional stable layers in central London, effectively decoupling surface emissions from air aloft.
Resumo:
A number of state-of-the-art protein structure prediction servers have been developed by researchers working in the Bioinformatics Unit at University College London. The popular PSIPRED server allows users to perform secondary structure prediction, transmembrane topology prediction and protein fold recognition. More recent servers include DISOPRED for the prediction of protein dynamic disorder and DomPred for domain boundary prediction.
Resumo:
The assimilation of observations with a forecast is often heavily influenced by the description of the error covariances associated with the forecast. When a temperature inversion is present at the top of the boundary layer (BL), a significant part of the forecast error may be described as a vertical positional error (as opposed to amplitude error normally dealt with in data assimilation). In these cases, failing to account for positional error explicitly is shown t o r esult in an analysis for which the inversion structure is erroneously weakened and degraded. In this article, a new assimilation scheme is proposed to explicitly include the positional error associated with an inversion. This is done through the introduction of an extra control variable to allow position errors in the a priori to be treated simultaneously with the usual amplitude errors. This new scheme, referred to as the ‘floating BL scheme’, is applied to the one-dimensional (vertical) variational assimilation of temperature. The floating BL scheme is tested with a series of idealised experiments a nd with real data from radiosondes. For each idealised experiment, the floating BL scheme gives an analysis which has the inversion structure and position in agreement with the truth, and outperforms the a ssimilation which accounts only for forecast a mplitude error. When the floating BL scheme is used to assimilate a l arge sample of radiosonde data, its ability to give an analysis with an inversion height in better agreement with that observed is confirmed. However, it is found that the use of Gaussian statistics is an inappropriate description o f t he error statistics o f t he extra c ontrol variable. This problem is alleviated by incorporating a non-Gaussian description of the new control variable in the new scheme. Anticipated challenges in implementing the scheme operationally are discussed towards the end of the article.
Resumo:
We report a clear transition through a reconnection layer at the low-latitude magnetopause which shows a complete traversal across all reconnected field lines during northwestward interplanetary magnetic field (IMF) conditions. The associated plasma populations confirm details of the electron and ion mixing and the time history and acceleration through the current layer. This case has low magnetic shear with a strong guide field and the reconnection layer contains a single density depletion layer on the magnetosheath side which we suggest results from nearly field-aligned magnetosheath flows. Within the reconnection boundary layer, there are two plasma boundaries, close to the inferred separatrices on the magnetosphere and magnetosheath sides (Ssp and Ssh) and two boundaries associated with the Alfvén waves (or Rotational Discontinuities, RDsp and RDsh). The data are consistent with these being launched from the reconnection site and the plasma distributions are well ordered and suggestive of the time elapsed since reconnection of the field lines observed. In each sub-layer between the boundaries the plasma distribution is different and is centered around the current sheet, responsible for magnetosheath acceleration. We show evidence for a velocity dispersion effect in the electron anisotropy that is consistent with the time elapsed since reconnection. In addition, new evidence is presented for the occurrence of partial reflection of magnetosheath electrons at the magnetopause current layer.