998 resultados para Interdigital Coupled Line
Resumo:
The restructuring of energy markets to provide free access to the networks and the consequent increase of the number of power transactions has been causing congestions in transmission systems. As consequence, the networks suffer overloads in a more frequent way. One parameter that has strong influence on transfer capability is the reactive power flow. A sensitivity analysis can be used to find the best solution to minimize the reactive power flows and relief, the overload in one transmission line. The proposed methodology consists on the computation of two sensitivities based on the use of the Lc matrix from CRIC (Constant Reactive Implicitly Coupled) power flow method, that provide a set of actions to reduce the reactive power flow and alleviate overloads in the lines: (a) sensitivity between reactive power flow in lines and reactive power injections in the buses, (b) sensitivity between reactive power flow in lines and transformer's taps. © 2006 IEEE.
Resumo:
The phases of a transmission line are tightly coupled due to mutual impedances and admittances of the line. One way to accomplish the calculations of currents and voltages in multi-phase lines consists in representing them in modal domain, where its n coupled phases are represented by their n propagation modes. The separation line in their modes of propagation is through the use of a modal transformation matrix whose columns are eigenvectors associated with the parameters of the line. Usually, this matrix is achieved through numerical methods which do not allow the achievement of an analytical model for line developed directly in the phases domain. This work will show an analytical model for phase currents and voltages of the line and results it will be applied to a hypothetical two-phase. It will be shown results obtained with that will be compared to results obtained using a classical model. © 2012 IEEE.
Resumo:
A rational and selective method using on-line high-performance liquid chromatography (HPLC) coupled with electrospray quadrupole time-of-flight tandem mass spectrometry (ESI-QToF-MS/MS) was established for the dereplication of phenolic derivatives from Qualea grandiflora and Qualea cordata. The selection of the extracts was based on the antioxidant capacity measured by in vitro DPPH assay. The HPLC-ESI-QToF-MS/MS analysis was conducted by on-flow detection, using high-resolution mass/ratio ions as well as collision induced MS/MS experiments for selected protonated ions. The dereplication of the EtOAc fraction from the hydro alcohol extract from the stem bark of Q. grandiflora allowed the detection of the flavonoids: 3',4',5',5,6,7-hexahydroxy- 8 methylflavanone, 8-methyl-naringenine and 3',7-dimethoxy-8 methyl-4',5,7- trihydroxyflavanone, as well as a benzophenone derivatives: bis(4,6-dimethoxy-2- hydroxy-3-methylphenyl)- metanone, 3',4'-dimethoxy-8-methyl-5,6,7 trihydroxyflavanone, 7-methoxy-6-methyl- 3',4',5 trihydroxyflavanone, 6,8-dimethyl-3' methoxy-4',5,7 trihydroxyflavanone and 3',5'-dimethoxy-6,8- dimethyl-4',5,7 trihydroxyflavanone were detected in the EtOAc fraction from the hydro-alcohol extract from the leaves of Q. cordata. © 2013 Sociedade Brasileira de Química.
Resumo:
The phases of a transmission line are tightly coupled due to mutual impedances and admittances of the line. One way to accomplish the calculations of currents and voltages in multi phase lines consists in representing them in modal domain, where its n coupled phases are represented by their n propagation modes. The separation line in their modes of propagation is through the use of a modal transformation matrix whose columns are eigenvectors associated with the parameters of the line. Usually, this matrix is achieved through numerical methods which do not allow the achievement of an analytical model for line developed directly in the phases domain. This work will show an analytical model for phase currents and voltages of the line and results it will be applied to a hypothetical two-phase. It will be shown results obtained with that will be compared to results obtained using a classical model © 2003-2012 IEEE.
Resumo:
The second-order differential equations that describe the polyphase transmission line are difficult to solve due to the mutual coupling among them and the fact that the parameters are distributed along their length. A method for the analysis of polyphase systems is the technique that decouples their phases. Thus, a system that has n phases coupled can be represented by n decoupled single-phase systems which are mathematically identical to the original system. Once obtained the n-phase circuit, it's possible to calculate the voltages and currents at any point on the line using computational methods. The Universal Line Model (ULM) transforms the differential equations in the time domain to algebraic equations in the frequency domain, solve them and obtain the solution in the frequency domain using the inverse Laplace transform. This work will analyze the method of modal decomposition in a three-phase transmission line for the evaluation of voltages and currents of the line during the energizing process.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aufbau einer kontinuierlichen, mehrdimensionalen Hochleistungs-flüssigchromatographie-Anlage für die Trennung von Proteinen und Peptiden mit integrierter größenselektiver ProbenfraktionierungEs wurde eine mehrdimensionale HPLC-Trennmethode für Proteine und Peptide mit einem Molekulargewicht von <15 kDa entwickelt.Im ersten Schritt werden die Zielanalyte von höhermolekularen sowie nicht ionischen Bestandteilen mit Hilfe von 'Restricted Access Materialien' (RAM) mit Ionenaustauscher-Funktionalität getrennt. Anschließend werden die Proteine auf einer analytischen Ionenaustauscher-Säule sowie auf Reversed-Phase-Säulen getrennt. Zur Vermeidung von Probenverlusten wurde ein kontinuierlich arbeitendes, voll automatisiertes System auf Basis unterschiedlicher Trenngeschwindigkeiten und vier parallelen RP-Säulen aufgebaut.Es werden jeweils zwei RP-Säulen gleichzeitig, jedoch mit zeitlich versetztem Beginn eluiert, um durch flache Gradienten ausreichende Trennleistungen zu erhalten. Während die dritte Säule regeneriert wird, erfolgt das Beladen der vierte Säule durch Anreicherung der Proteine und Peptide am Säulenkopf. Während der Gesamtanalysenzeit von 96 Minuten werden in Intervallen von 4 Minuten Fraktionen aus der 1. Dimension auf die RP-Säulen überführt und innerhalb von 8 Minuten getrennt, wobei 24 RP-Chromatogramme resultieren.Als Testsubstanzen wurden u.a. Standardproteine, Proteine und Peptide aus humanem Hämofiltrat sowie aus Lungenfibroblast-Zellkulturüberständen eingesetzt. Weiterhin wurden Fraktionen gesammelt und mittels MALDI-TOF Massenspektrometrie untersucht. Bei einer Injektion wurden in den 24 RP-Chromatogrammen mehr als 1000 Peaks aufgelöst. Der theoretische Wert der Peakkapazität liegt bei ungefähr 3000.
Resumo:
The first part of this work deals with the inverse problem solution in the X-ray spectroscopy field. An original strategy to solve the inverse problem by using the maximum entropy principle is illustrated. It is built the code UMESTRAT, to apply the described strategy in a semiautomatic way. The application of UMESTRAT is shown with a computational example. The second part of this work deals with the improvement of the X-ray Boltzmann model, by studying two radiative interactions neglected in the current photon models. Firstly it is studied the characteristic line emission due to Compton ionization. It is developed a strategy that allows the evaluation of this contribution for the shells K, L and M of all elements with Z from 11 to 92. It is evaluated the single shell Compton/photoelectric ratio as a function of the primary photon energy. It is derived the energy values at which the Compton interaction becomes the prevailing process to produce ionization for the considered shells. Finally it is introduced a new kernel for the XRF from Compton ionization. In a second place it is characterized the bremsstrahlung radiative contribution due the secondary electrons. The bremsstrahlung radiation is characterized in terms of space, angle and energy, for all elements whit Z=1-92 in the energy range 1–150 keV by using the Monte Carlo code PENELOPE. It is demonstrated that bremsstrahlung radiative contribution can be well approximated with an isotropic point photon source. It is created a data library comprising the energetic distributions of bremsstrahlung. It is developed a new bremsstrahlung kernel which allows the introduction of this contribution in the modified Boltzmann equation. An example of application to the simulation of a synchrotron experiment is shown.
Resumo:
Objectives. Latinos are the nation's largest minority group and will double in size by 2050. Their size coupled with the fact that Latinos do not constitute a separate race raises questions about Latinos' incorporation into the U. S. racial hierarchy. This article explores patterns of Latino racial identity formation, examining the determinants of racial identity. Methods. Using the 2006 Latino National Survey, I estimate multinomial logit and ordered probit models of identification choices. Results. Latino racial identity is strongly associated with several factors, including socioeconomic status, measures of perceived discrimination and commonality, and measures of acculturation/assimilation. Most Latinos have a broader, more complex understanding of race. Furthermore, some Latinos do believe that they occupy a unique position in the racial hierarchy. Conclusions. The results suggest that the color line W. E. DuBois argued has long divided our nation may eventually shift.
Resumo:
The new Bern cyclotron laboratory aims at industrial radioisotope production for PET diagnostics and multidisciplinary research by means of a specifically conceived beam transfer line, terminated in a separate bunker. In this framework, an innovative beam monitor detector based on doped silica and optical fibres has been designed, constructed, and tested. Scintillation light produced by Ce and Sb doped silica fibres moving across the beam is measured, giving information on beam position, shape, and intensity. The doped fibres are coupled to commercial optical fibres, allowing the read-out of the signal far away from the radiation source. This general-purpose device can be easily adapted for any accelerator used in medical applications and is suitable either for low currents used in hadrontherapy or for currents up to a few μA for radioisotope production, as well as for both pulsed and continuous beams.
Resumo:
Butyrate is a short-chain fatty acid (SCFA) closely related to the ketone body ß-hydroxybutyrate (BHB), which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH) rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous agonist for the two G-protein-coupled receptors (GPCR), GPR41 and 43, on non-stimulated and GH-releasing hormone (GHRH)-stimulated hGH secretion. Furthermore, we investigated the potential role of GPR41 and 43 on the generation of butyrate-induced intracellular Ca2+ signal and its ultimate impact on hGH secretion. To study this, wt-hGH was transfected into a rat pituitary tumour cell line stably expressing the human GHRH receptor. Treatment with butyrate promoted hGH synthesis and improved basal and GHRH-induced hGH-secretion. By acting through GPR41 and 43, butyrate enhanced intracellular free cytosolic Ca2+. Gene-specific silencing of these receptors led to a partial inhibition of the butyrate-induced intracellular Ca2+ rise resulting in a decrease of hGH secretion. This study suggests that butyrate is a metabolic intermediary, which contributes to the secretion and, therefore, to the metabolic actions of GH during fasting.
Resumo:
The use of ion microbeams as probes for computedtomography has proven to be a powerful tool for the three-dimensional characterization of specimens a few tens of micrometers in size. Compared to other types of probes, the main advantage is that quantitative information about mass density and composition can be obtained directly, using specific reconstruction codes. At the Centre d’Etudes Nucléaires de Bordeaux Gradignan (CENBG), this technique was initially developed for applications in cellular biology. However, the observation of the cell ultrastructure requires a sub-micron resolution. The construction of the nanobeamline at the Applications Interdisciplinaires des Faisceaux d’Ions en Region Aquitaine (AIFIRA) irradiation facility has opened new perspectives for such applications. The implementation of computedtomography on the nanobeamline of CENBG has required a careful design of the analysis chamber, especially microscopes for precise sample visualization, and detectors for scanning transmission ion microscopy (STIM) and for particle induced X-ray emission (PIXE). The sample can be precisely positioned in the three directions X, Y, Z and a stepper motor coupled to a goniometer ensures the rotational motion. First images of 3D tomography were obtained on a reference sample containing microspheres of certified diameter, showing the good stability of the beam and the sample stage, and the precision of the motion.
Resumo:
The study of lateral dynamics of running trains on bridges is of importance mainly for the safety of the traffic, and may be relevant for laterally compliant bridges. These studies require 3D coupled vehicle-bridge models, and consideration of wheel to rail contact, a phenomenon which is complex and costly to model in detail. We describe here a fully nonlinear coupled model, described in absolute coordinates and incorporated into a commercial finite element framework. Two applications are presented, firstly to a vehicle subject to a strong wind gust traversing a br idge, showing the relevance of the nonlinear wheel-rail contact model as well as the interaction between bridge and vehicle. The second application is to a real viaduct in a high-speed line, with a long continuous deck and tall piers with high lateral compliance. The results show the safety of the traffic as well as the relevance of considering the wind action and the nonlinear response.
Resumo:
Background: Analysis of exhaled volatile organic compounds (VOCs) in breath is an emerging approach for cancer diagnosis, but little is known about its potential use as a biomarker for colorectal cancer (CRC). We investigated whether a combination of VOCs could distinct CRC patients from healthy volunteers. Methods: In a pilot study, we prospectively analyzed breath exhalations of 38 CRC patient and 43 healthy controls all scheduled for colonoscopy, older than 50 in the average-risk category. The samples were ionized and analyzed using a Secondary ElectroSpray Ionization (SESI) coupled with a Time-of-Flight Mass Spectrometer (SESI-MS). After a minimum of 2 hours fasting, volunteers deeply exhaled into the system. Each test requires three soft exhalations and takes less than ten minutes. No breath condensate or collection are required and VOCs masses are detected in real time, also allowing for a spirometric profile to be analyzed along with the VOCs. A new sampling system precludes ambient air from entering the system, so background contamination is reduced by an overall factor of ten. Potential confounding variables from the patient or the environment that could interfere with results were analyzed. Results: 255 VOCs, with masses ranging from 30 to 431 Dalton have been identified in the exhaled breath. Using a classification technique based on the ROC curve for each VOC, a set of 9 biomarkers discriminating the presence of CRC from healthy volunteers was obtained, showing an average recognition rate of 81.94%, a sensitivity of 87.04% and specificity of 76.85%. Conclusions: A combination of cualitative and cuantitative analysis of VOCs in the exhaled breath could be a powerful diagnostic tool for average-risk CRC population. These results should be taken with precaution, as many endogenous or exogenous contaminants could interfere as confounding variables. On-line analysis with SESI-MS is less time-consuming and doesn’t need sample preparation. We are recruiting in a new pilot study including breath cleaning procedures and spirometric analysis incorporated into the postprocessing algorithms, to better control for confounding variables.
Resumo:
So far, the majority of reports on on-line measurement considered soil properties with direct spectral responses in near infrared spectroscopy (NIRS). This work reports on the results of on-line measurement of soil properties with indirect spectral responses, e.g. pH, cation exchange capacity (CEC), exchangeable calcium (Caex) and exchangeable magnesium (Mgex) in one field in Bedfordshire in the UK. The on-line sensor consisted of a subsoiler coupled with an AgroSpec mobile, fibre type, visible and near infrared (vis–NIR) spectrophotometer (tec5 Technology for Spectroscopy, Germany), with a measurement range 305–2200 nm to acquire soil spectra in diffuse reflectance mode. General calibration models for the studied soil properties were developed with a partial least squares regression (PLSR) with one-leave-out cross validation, using spectra measured under non-mobile laboratory conditions of 160 soil samples collected from different fields in four farms in Europe, namely, Czech Republic, Denmark, Netherland and UK. A group of 25 samples independent from the calibration set was used as independent validation set. Higher accuracy was obtained for laboratory scanning as compared to on-line scanning of the 25 independent samples. The prediction accuracy for the laboratory and on-line measurements was classified as excellent/very good for pH (RPD = 2.69 and 2.14 and r2 = 0.86 and 0.78, respectively), and moderately good for CEC (RPD = 1.77 and 1.61 and r2 = 0.68 and 0.62, respectively) and Mgex (RPD = 1.72 and 1.49 and r2 = 0.66 and 0.67, respectively). For Caex, very good accuracy was calculated for laboratory method (RPD = 2.19 and r2 = 0.86), as compared to the poor accuracy reported for the on-line method (RPD = 1.30 and r2 = 0.61). The ability of collecting large number of data points per field area (about 12,800 point per 21 ha) and the simultaneous analysis of several soil properties without direct spectral response in the NIR range at relatively high operational speed and appreciable accuracy, encourage the recommendation of the on-line measurement system for site specific fertilisation.