976 resultados para Interannual Variability
Resumo:
δ13C and δ15N values were determined for the seagrassThalassia testudinum at four permanent seagrass monitoring stations in southFlorida, USA, through a quarterly sampling program over 3-years (1996–1998). All sites are seagrass beds with water depths of less than 6 m. Two sites are located on the Florida Bay side of the Florida Keys, and the other two sites are on the Atlantic side. The data analyzed over the 3 year study period display unique patterns associated with seasonal changes in primary productivity and potentially changes in the N and C pools. The mean carbon and nitrogenisotope values of T. testudinum from all four stations vary from −7.2 to −10.4‰ and 1.1 to 2.2‰, respectively. However, certain stations displayed anomalously depleted nitrogenisotope values (as low as −1.2‰). These values may indicate that biogeochemical processes like N fixation, ammonification and denitrification cause temporal changes in the isotopic composition of the source DIN. Both δ13C and δ15N values displayed seasonal enrichment-depletion patterns, with maximum enrichment occurring during the summer to early fall. The intra-annual variations of δ13C values from the different stations ranged from about 1 to 3.5‰; whereas variations in δ15N ranged from about 1 to 4.9‰. Certain sites showed a positive relationship between isotope values and productivity. These data indicate δ13C values display a high degree of seasonal variability as related to changes in productivity. δ15N values show clear intra-annual variations, but the observed changes do not necessarily follow a distinct seasonal cycle, indicating that changes in DIN will need further investigation.
Resumo:
This article will review major features of the 'giant' Cape Blanc filament off Mauritania with regard to the transport of chlorophyll and organic carbon from the shelf to the open ocean. Within the filament, chlorophyll is transported about 400 km offshore. Modelled particle distributions along a zonal transect at 21°N showed that particles with a sinking velocity of 5 m d**-1 are advected offshore by up to 600 km in subsurface particle clouds generally located between 400 m and 800 m water depth, forming an Intermediate Nepheloid Layer (INL). It corresponds to the depth of the oxygen minimum zone. Heavier particles with a sinking velocity of 30 m d**-1 are transported from the shelf within the Bottom Layer (BL) of more than 1000 m thickness, largely following the topography of the bottom slope. The particles advected within the BL contribute to the enhanced winter-spring mass fluxes collected at the open-ocean mesotrophic sediment trap site CB-13 (200 nm offshore), due to a long distance advection in deeper waters. The lateral contribution to the deep sediment trap in winter-spring is estimated to be 63% and 72% for organic carbon and total mass, respectively, whereas the lateral input for both components on an annual basis is estimated to be in the order of 15%. Biogenic opal increases almost fivefold from the upper to the lower mesotrophic CB-13 trap, also pointing to an additional source for biogenic silica from eutrophic coastal waters. Blooms obviously sink in smaller, probably mesoscale-sized patches with variable settling rates, depending on the type of aggregated particles and their ballast content. Generally, particle sinking rates are exceptionally high off NW Africa. Very high chlorophyll values and a large size of the Cape Blanc filament in 1998-1999 are also documented in enhanced total mass and organic carbon fluxes. An increasing trend in satellite chlorophyll concentrations and the size of the Cape Blanc filament between 1997 and 2008 as observed for other coastal upwelling areas is not documented.
Resumo:
Adults of most marine benthic and demersal fish are site-attached, with the dispersal of their larval stages ensuring connectivity among populations. In this study we aimed to infer spatial and temporal variation in population connectivity and dispersal of a marine fish species, using genetic tools and comparing these with oceanographic transport. We focused on an intertidal rocky reef fish species, the shore clingfish Lepadogaster lepadogaster, along the southwest Iberian Peninsula, in 2011 and 2012. We predicted high levels of self-recruitment and distinct populations, due to short pelagic larval duration and because all its developmental stages have previously been found near adult habitats. Genetic analyses based on microsatellites countered our prediction and a biophysical dispersal model showed that oceanographic transport was a good explanation for the patterns observed. Adult sub-populations separated by up to 300 km of coastline displayed no genetic differentiation, revealing a single connected population with larvae potentially dispersing long distances over hundreds of km. Despite this, parentage analysis performed on recruits from one focal site within the Marine Park of Arrábida (Portugal), revealed self-recruitment levels of 2.5% and 7.7% in 2011 and 2012, respectively, suggesting that both long- and short-distance dispersal play an important role in the replenishment of these populations. Population differentiation and patterns of dispersal, which were highly variable between years, could be linked to the variability inherent in local oceanographic processes. Overall, our measures of connectivity based on genetic and oceanographic data highlight the relevance of long-distance dispersal in determining the degree of connectivity, even in species with short pelagic larval durations.
Rainfall variability drives interannual variation in N2O emissions from a humid, subtropical pasture
Resumo:
Variations in interannual rainfall totals can lead to large uncertainties in annual N2O emission budget estimates from short term field studies. The interannual variation in nitrous oxide (N2O) emissions from a subtropical pasture in Queensland, Australia, was examined using continuous measurements of automated chambers over 2 consecutive years. Nitrous oxide emissions were highest during the summer months and were highly episodic, related more to the size and distribution of rain events than soil water content. Over 48% of the total N2O emitted was lost in just 16% of measurement days. Interannual variation in annual N2O estimates was high, with cumulative emissions increasing with decreasing rainfall. Cumulative emissions averaged 1826.7 ± 199.9 g N2O-N ha−1 yr−1 over the two year period, though emissions from 2008 (2148 ± 273 g N2O-N ha−1 yr−1) were 42% higher than 2007 (1504 ± 126 g N2O-N ha−1 yr−1). This increase in annual emissions coincided with almost half of the summer precipitation from 2007 to 2008. Emissions dynamics were chiefly driven by the distribution and size of rain events which varied on a seasonal and annual basis. Sampling frequency effects on cumulative N2O flux estimation were assessed using a jackknife technique to inform future manual sampling campaigns. Test subsets of the daily measured data were generated for the pasture and two adjacent land-uses (rainforest and lychee orchard) by selecting measured flux values at regular time intervals ranging from 1 to 30 days. Errors associated with weekly sampling were up to 34% of the sub-daily mean and were highly biased towards overestimation if strategically sampled following rain events. Sampling time of day also played a critical role. Morning sampling best represented the 24 hour mean in the pasture, whereas sampling at noon proved the most accurate in the shaded rainforest and lychee orchard.
Resumo:
Long-term trends, interannual and intra-seasonal variability in the mass-balance record from Djankuat glacier, central Greater Caucasus, Russia, are related to local climate change, synoptic and large-scale anomalies in atmospheric circulation. A clear warming signal emerged in the central Greater Caucasus in the early 1990s, leading to a strong increase in ablation. In the absence of a compensating change in winter accumulation, the net mass balance of Djankuat has declined. The highest value of seasonal ablation on record was registered in the summer of 2000. At the beginning of the 21st century these trends reversed. Ablation was below average even in the summer of 2003, which was unusually warm in western Europe. Precipitation and winter accumulation were high, allowing for a partial recovery of net mass balance. The interannual variability in the components of mass balance is weakly related to the North Atlantic Oscillation (NAO) and the Scandinavian teleconnection patterns, but there is a clear link with the large-scale circulation anomalies represented by the Rossby pattern. Five synoptic categories have been identified for the ablation season of 2005, revealing a strong separation between components of radiation budget, air temperature and daily melt. Air temperature is the main control over melt. The highest values of daily ablation are related to the strongly positive NAO which forces high net radiation, and to the warm and moist advection from the Black Sea.
Resumo:
Observations show that there was change in interannual North Atlantic Oscillation (NAO) variability in the mid-1970s. This change was characterized by an eastward shift of the NAO action centres, a poleward shift of zonal wind anomalies and a downstream extension of climate anomalies associated with the NAO. The NAO interannual variability for the period after the mid-1970s has an annular mode structure that penetrates deeply into the stratosphere, indicating a strengthened relationship between the NAO and the Arctic Oscillation (AO) and strengthened stratosphere-troposphere coupling. In this study we have investigated possible causes of these changes in the NAO by carrying out experiments with an atmospheric GCM. The model is forced either by doubling CO2, or increasing sea surface temperatures (SST), or both. In the case of SST forcing the SST anomaly is derived from a coupled model simulation forced by increasing CO2. Results indicate that SST and CO2 change both force a poleward and eastward shift in the pattern of interannual NAO variability and the associated poleward shift of zonal wind anomalies, similar to the observations. The effect of SST change can be understood in terms of mean changes in the troposphere. The direct effect of CO2 change, in contrast, can not be understood in terms of mean changes in the troposphere. However, there is a significant response in the stratosphere, characterized by a strengthened climatological polar vortex with strongly enhanced interannual variability. In this case, the NAO interannual variability has a strong link with the variability over the North Pacific, as in the annular AO pattern, and is also strongly related to the stratospheric vortex, indicating strengthened stratosphere-troposphere coupling. The similarity of changes in many characteristics of NAO interannual variability between the model response to doubling CO2 and those in observations in the mid-1970s implies that the increase of greenhouse gas concentration in the atmosphere, and the resulting changes in the stratosphere, might have played an important role in the multidecadal change of interannual NAO variability and its associated climate anomalies during the late twentieth century. The weak change in mean westerlies in the troposphere in response to CO2 change implies that enhanced and eastward extended mid-latitude westerlies in the troposphere might not be a necessary condition for the poleward and eastward shift of the NAO action centres in the mid-1970s.
Resumo:
The frequency of extreme rainfall events in Southern Brazil is impacted by Ell Nino - Southern Oscillation (ENSO) episodes, especially in austral spring. There are two areas in which this impact is more significant: one is on the coast, where extreme events are more frequent during El Nino (EN) and the other one extends inland, where extreme events increase during EN and decrease during La Nina (LN). Atmospheric circulation patterns associated with severe rainfall in those areas are similar (opposite) to anomalous patterns characteristic of EN (LN) episodes, indicating why increase (decrease) of extreme events in EN (LN) episodes is favoured. The most recurrent precipitation patterns during extreme rainfall events in each of these areas are disclosed by Principal Component Analysis (PCA) and evidence the separation between extreme events in these areas: a severe precipitation event generally does not occur simultaneously in the coast and inland, although they may Occur inland and in the coastal region in sequence. Although EN predominantly enhances extreme rainfall, there are EN years in which fewer severe events occur than the average of neutral years, and also the enhancement of extreme rainfall is not uniform for different EN episodes, because the interdecadal non-ENSO variability also modulates significantly the frequency of extreme events in Southern Brazil. The inland region, which is more affected, shows increase (decrease) of extreme rainfall in association with the negative (positive) phase of the Atlantic Multidecadal Variability, with the negative (positive) phase of the Pacific Multidecadal Variability and with the positive (negative) phase of the Pacific Interdecadal Variability. Copyright (C) 2008 Royal Meteorological Society
Resumo:
In the California Current System, strong mesoscale variability associated with eddies and meanders of the coastal jet play an important role in the biological productivity of the area. To assess the dominant timescales of variability, a wavelet analysis is applied to almost nine years (October 1997 to July 2006) of 1-km-resolution, 5-day-averaged, Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll a (chl a) concentration data. The dominant periods of chlorophyll variance, and how these change in time, are quantified as a function of distance offshore. The maximum variance in chlorophyll occurs with a period of similar to 100-200 days. A seasonal cycle in the timing of peak variance is revealed, with maxima in spring/summer close to shore (20 km) and in autumn/winter 200 km offshore. Interannual variability in the magnitude of chlorophyll variance shows maxima in 1999, 2001, 2002, and 2005. There is a very strong out-of-phase correspondence between the time series of chlorophyll variance and the Pacific Decadal Oscillation (PDO) index. We hypothesize that positive PDO conditions, which reflect weak winds and poor upwelling conditions, result in reduced mesoscale variability in the coastal region, and a subsequent decrease in chlorophyll variance. Although the chlorophyll variance responds to basin-scale forcing, chlorophyll biomass does not necessarily correspond to the phase of the PDO, suggesting that it is influenced more by local-scale processes. The mesoscale variability in the system may be as important as the chl a biomass in determining the potential productivity of higher trophic levels.
Resumo:
The potential predictability of the Indian summer monsoon due to slowly varying sea surface temperature (SST) forcing is examined. Factors responsible for limiting the predictability are also investigated. Three multiyear simulations with the R30 version of the Geophysical Fluid Dynamics Laboratory's climate model are carried out for this purpose, The mean monsoon simulated by this model is realistic including the mean summer precipitation over the Indian continent. The interannual variability of the large-scale component of the monsoon such as the "monsoon shear index" and its teleconnection with Pacific SST is well simulated by the model in a 15-yr integration with observed SST as boundary condition. On regional scales, the skill in simulating the interannual variability of precipitation over the Indian continent by the model is rather modest and its simultaneous correlation with eastern Pacific SST is negative but poor as observed. The poor predictability of precipitation over the Indian region in the model is related to the fact that contribution to the interannual variability over this region due to slow SST variations [El Nino-Southern Oscillation (ENSO) related] is comparable to those due to regional-scale fluctuations unrelated to ENSO SST. The physical mechanism through which ENSO SST tend to produce reduction in precipitation over the Indian continent is also elucidated. A measure of internal variability of the model summer monsoon is obtained from a 20-yr integration of the same model with fixed annual cycle SST as boundary conditions but with predicted soil moisture and snow cover. A comparison of summer monsoon indexes between this run and the observed SST run shows that the internal oscillations can account for a large fraction of the simulated monsoon variability. The regional-scale oscillations in the observed SST run seems to arise from these internal oscillations. It is discovered that most of the interannual internal variability is due to an internal quasi-biennial oscillation (QBO) of the model atmosphere. Such a QBO is also found in the author's third 18-yr simulation in which fixed annual cycle of SST as well as soil moisture and snow cover are prescribed. This shows that the model QBO is not due to land-surface-atmosphere interaction. It is proposed that the model QBO arises due to an interaction between nonlinear intraseasonal oscillations and the annual cycle. Spatial structure of the QBO and its role in limiting the predictability of the Indian summer monsoon is discussed.
Resumo:
In this paper, we estimate the trends and variability in Advanced Very High Resolution Radiometer (AVHRR)-derived terrestrial net primary productivity (NPP) over India for the period 1982-2006. We find an increasing trend of 3.9% per decade (r = 0.78, R-2 = 0.61) during the analysis period. A multivariate linear regression of NPP with temperature, precipitation, atmospheric CO2 concentration, soil water and surface solar radiation (r = 0.80, R-2 = 0.65) indicates that the increasing trend is partly driven by increasing atmospheric CO2 concentration and the consequent CO2 fertilization of the ecosystems. However, human interventions may have also played a key role in the NPP increase: non-forest NPP growth is largely driven by increases in irrigated area and fertilizer use, while forest NPP is influenced by plantation and forest conservation programs. A similar multivariate regression of interannual NPP anomalies with temperature, precipitation, soil water, solar radiation and CO2 anomalies suggests that the interannual variability in NPP is primarily driven by precipitation and temperature variability. Mean seasonal NPP is largest during post-monsoon and lowest during the pre-monsoon period, thereby indicating the importance of soil moisture for vegetation productivity.
Resumo:
The amount of water stored and moving through the surface water bodies of large river basins (river, floodplains, wetlands) plays a major role in the global water and biochemical cycles and is a critical parameter for water resources management. However, the spatiotemporal variations of these freshwater reservoirs are still widely unknown at the global scale. Here, we propose a hypsographic curve approach to estimate surface freshwater storage variations over the Amazon basin combining surface water extent from a multi-satellite-technique with topographic data from the Global Digital Elevation Model (GDEM) from Advance Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Monthly surface water storage variations for 1993-2007 are presented, showing a strong seasonal and interannual variability, and are evaluated against in situ river discharge and precipitation. The basin-scale mean annual amplitude of similar to 1200 km(3) is in the range of previous estimates and contributes to about half of the Gravity Recovery And Climate Experiment (GRACE) total water storage variations. For the first time, we map the surface water volume anomaly during the extreme droughts of 1997 (October-November) and 2005 (September-October) and found that during these dry events the water stored in the river and floodplains of the Amazon basin was, respectively, similar to 230 (similar to 40%) and 210 (similar to 50%) km(3) below the 1993-2007 average. This new 15 year data set of surface water volume represents an unprecedented source of information for future hydrological or climate modeling of the Amazon. It is also a first step toward the development of such database at the global scale.
Resumo:
Interannual variability caused by the El Nino-Southern Oscillation in the eastern tropical Pacific Ocean (ETP) is analogous to seasonal variability of comparable magnitude. Climatological spatial patterns and seasonal variability of physical variables that may affect the ETP ecosystem are presented and discussed. Surface temperature, surface salinity, mixed layer depth, thermocline depth, thermocline strength, and surface dynamic height were derived from bathythermograph, hydrocast, and CTD data. Surface current velocity, divergence, and upwelling velocity were derived from ship drift reports. Surface wind velocity, wind stress, wind divergence, wind stress curl, and Ekman pumping velocity were derived from gridded pseudostress data obtained from Florida State University. Seasonal maps of these variables, and their deviations from the annual mean, show different patterns of variation in Equatorial (S°S-SON) and Tropical Surface Water (SOlS0N). Seasonal shifts in the trade winds, which affect the strength of equatorial upwelling and the North Equatorial Countercurrent, cause seasonal variations in most variables. Seasonal and interannual variability of surface temperature, mixed layer depth, thermocline depth and wind stress were quantified. Surface temperature, mixed layer depth and thermocline depth, but not local wind stress, are less variable in Tropical Surface Water than in Equatorial Surface Water. Seasonal and interannual variability are close to equal in most of the ETP, within factors of 2 or less. (PDF file contains 70 pages.)
Resumo:
Twenty-seven years (1956-1983) of oceanographic data collected at Ocean Station P (50°N/145°W), as well as supplementary data obtained in its neighborhood, have been examined for trends and interannual variability in the northeast Pacific Ocean. There is evidence that the water is warming and freshening and that the isopycnal surfaces are deepening. Trends in oxyty are mostly not significant. The most common periods for the interannual variability appear to be 2 1/2 and 6-7 years. The vertical movement of water accounts for one half of the changes in temperature and salinity and 30% of those in oxyty. Other factors, such as a shift of water masses, may also be important.
Resumo:
Latin America has been shown to be susceptible to climatic anomalies during El Niño/Southern Oscillation (ENSO) events (eg, Aceituno 1988; Ropelewshi and Halpert 1987; Kiladis and Diaz 1989). While these studies have emphasized ENSO-related rainfall and temperature anomalies over Central and South America, less work has been done on the climatic effects of ENSO over the Mexican region. In this study we are investigating interannual and intraseasonal fluctuation in temperature and precipitation over the southwestern United States and Mexico since the turn of the century. We are particularly interested in the effects of ENSO on the interannual variability over this region. This report focuses on the association between ENSO and interannual variability of precipitation over Mexico.
Resumo:
We used fifteen years (1993-2007) of altimetric data, combined from different missions (ERS-1/2, TOPEX/Poseidon, Jason-1, and Envisat), to analyze the variability of the eddy kinetic energy (EKE) in the South China Sea (SCS). We found that the EKE ranged from 64 cm(2)/s(2) to 1 390 cm(2)/s(2) with a mean value of 314 cm(2)/s(2). The highest EKE center was observed to the east of Vietnam (with a mean value of 509 cm(2)/s(2)) and the second highest EKE region was located to the southwest of Taiwan Island (with a mean value of 319 cm(2)/s(2)). We also found that the EKE structure is the consequence of the superposition of different variability components. First, interannual variability is important in the SCS. Spectral analysis of the EKE interannual signal (IA-EKE) shows that the main periodicities of the IA-EKE to the east of Vietnam, to the southwest of Taiwan Island, and in the SCS are 3.75, 1.87, and 3.75 years, respectively. It is to the south of Taiwan Island that the IA-EKE signal has the most obvious impact on EKE variability. In addition, the IA-EKE exhibit different trends in different regions. An obvious positive trend is observed along the east coast of Vietnam, while a negative trend is found to the southwest of Taiwan Island and in the east basin of Vietnam. Correlation analysis shows that the IA-EKE has an obvious negative correlation with the SSTA in Nio3 (5A degrees S-5A degrees N, 90A degrees W-150A degrees W). El Nio-Southern Oscillation (ENSO) affects the IA-EKE variability in the SCS through an atmospheric bridge-wind stress curl over the SCS. Second, the seasonal cycle is the most obvious timescale affecting EKE variability. The locations of the most remarkable EKE seasonal variabilities in the SCS are to the east of Vietnam, to the southwest of Taiwan, and to the west of Philippines. To the east of Vietnam, the seasonal cycle is the dominant mechanism controlling EKE variability, which is attributed primarily to the annual cycle there of wind stress curl. In this area, the maximum EKE is observed in autumn. To the southwest of Taiwan Island, the EKE is enlarged by the stronger SCS circulation, which is caused by the intrusion branch from the Kuroshio in winter. Finally, intra-annual and mesoscale variability, although less important than the former, cannot be neglected. The most obvious intra-annual and mesoscale variability, which may be the result of baroclinic instability of the background flow, are observed to the southwest of Taiwan Island. Sporadic events can have an important effect on EKE variability.