992 resultados para Interacting system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A scheme for giant enhancement of the Kerr nonlinearity in a four-level system with double dark resonances is proposed. Compared with that generated in a single-dark-resonance system, the Kerr nonlinearity can be enhanced by several orders of magnitude with vanishing linear absorption. We attribute this dramatic enhancement to the interaction of dark resonances. (c) 2005 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose an atom localization scheme for a tripod-type atom making use of the sharp absorption peak resulting from interacting double-dark resonances. It is demonstrated that the probability of finding the atom at a particular position, as well as the localization precision, can be dramatically enhanced. The probability can be doubled by adjusting the Rabi frequency of the control field to the maximum Rabi frequency of the standing-wave field. Moreover, much better spatial resolution can be achieved for smaller detunings of the control and the standing-wave fields. (c) 2006 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The group velocities of the probe laser field are studied in a A-type system where one lower state has two fold levels coupled by a control field. It is found that the interaction of double dark states leads to controllable group velocity of the probe field in this system. It can be easily realized, due to the interacting double dark resonances, that one of the group velocities at transparency positions is much slower than the other by tuning the control field to be off resonance. In particular, when the control field is on resonance. we can obtain two equal slow group velocities with a broader EIT width, which provides potential applications in quantum storage and retrieval of light. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Underlying matter and light are their building blocks of tiny atoms and photons. The ability to control and utilize matter-light interactions down to the elementary single atom and photon level at the nano-scale opens up exciting studies at the frontiers of science with applications in medicine, energy, and information technology. Of these, an intriguing front is the development of quantum networks where N >> 1 single-atom nodes are coherently linked by single photons, forming a collective quantum entity potentially capable of performing quantum computations and simulations. Here, a promising approach is to use optical cavities within the setting of cavity quantum electrodynamics (QED). However, since its first realization in 1992 by Kimble et al., current proof-of-principle experiments have involved just one or two conventional cavities. To move beyond to N >> 1 nodes, in this thesis we investigate a platform born from the marriage of cavity QED and nanophotonics, where single atoms at ~100 nm near the surfaces of lithographically fabricated dielectric photonic devices can strongly interact with single photons, on a chip. Particularly, we experimentally investigate three main types of devices: microtoroidal optical cavities, optical nanofibers, and nanophotonic crystal based structures. With a microtoroidal cavity, we realized a robust and efficient photon router where single photons are extracted from an incident coherent state of light and redirected to a separate output with high efficiency. We achieved strong single atom-photon coupling with atoms located ~100 nm near the surface of a microtoroid, which revealed important aspects in the atom dynamics and QED of these systems including atom-surface interaction effects. We present a method to achieve state-insensitive atom trapping near optical nanofibers, critical in nanophotonic systems where electromagnetic fields are tightly confined. We developed a system that fabricates high quality nanofibers with high controllability, with which we experimentally demonstrate a state-insensitive atom trap. We present initial investigations on nanophotonic crystal based structures as a platform for strong atom-photon interactions. The experimental advances and theoretical investigations carried out in this thesis provide a framework for and open the door to strong single atom-photon interactions using nanophotonics for chip-integrated quantum networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the dispersive properties of excited-doublet four-level atoms interacting with a weak probe field and an intense coupling laser field. We have derived an analytical expression of the dispersion relation for a general excited-doublet four-level atomic system subject to a one-photon detuning. The numerical results demonstrate that for a typical rubidium D1 line configuration, due to the unequal dipole moments for the transitions of each ground state to double excited states, generally there exists no exact dark state in the system. Close to the two-photon resonance, the probe light can be absorbed orgained and propagate in the so-called superluminal form. This system may be used as an optical switch.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I. The binding of the intercalating dye ethidium bromide to closed circular SV 40 DNA causes an unwinding of the duplex structure and a simultaneous and quantitatively equivalent unwinding of the superhelices. The buoyant densities and sedimentation velocities of both intact (I) and singly nicked (II) SV 40 DNAs were measured as a function of free dye concentration. The buoyant density data were used to determine the binding isotherms over a dye concentration range extending from 0 to 600 µg/m1 in 5.8 M CsCl. At high dye concentrations all of the binding sites in II, but not in I, are saturated. At free dye concentrations less than 5.4 µg/ml, I has a greater affinity for dye than II. At a critical amount of dye bound I and II have equal affinities, and at higher dye concentration I has a lower affinity than II. The number of superhelical turns, τ, present in I is calculated at each dye concentration using Fuller and Waring's (1964) estimate of the angle of duplex unwinding per intercalation. The results reveal that SV 40 DNA I contains about -13 superhelical turns in concentrated salt solutions.

The free energy of superhelix formation is calculated as a function of τ from a consideration of the effect of the superhelical turns upon the binding isotherm of ethidium bromide to SV 40 DNA I. The value of the free energy is about 100 kcal/mole DNA in the native molecule. The free energy estimates are used to calculate the pitch and radius of the superhelix as a function of the number of superhelical turns. The pitch and radius of the native I superhelix are 430 Å and 135 Å, respectively.

A buoyant density method for the isolation and detection of closed circular DNA is described. The method is based upon the reduced binding of the intercalating dye, ethidium bromide, by closed circular DNA. In an application of this method it is found that HeLa cells contain in addition to closed circular mitochondrial DNA of mean length 4.81 microns, a heterogeneous group of smaller DNA molecules which vary in size from 0.2 to 3.5 microns and a paucidisperse group of multiples of the mitochondrial length.

II. The general theory is presented for the sedimentation equilibrium of a macromolecule in a concentrated binary solvent in the presence of an additional reacting small molecule. Equations are derived for the calculation of the buoyant density of the complex and for the determination of the binding isotherm of the reagent to the macrospecies. The standard buoyant density, a thermodynamic function, is defined and the density gradients which characterize the four component system are derived. The theory is applied to the specific cases of the binding of ethidium bromide to SV 40 DNA and of the binding of mercury and silver to DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have cloned a mouse homologue (designated Myak) of the yeast protein kinase YAK1. The 1210 aa open reading frame contains a putative protein kinase domain, nuclear localization sequences and PEST sequences. Myak appears to be a member of a growing family of YAK1-related genes that include Drosophila and human Minibrain as well as a recently identified rat gene ANPK that encode a steroid hormone receptor interacting protein. RNA blot analysis revealed that Myak is expressed at low levels ubiquitously but at high levels in reproductive tissues, including testis, epididymis, ovary, uterus, and mammary gland, as well as in brain and kidney. In situ hybridization analysis on selected tissues revealed that Myak is particularly abundant in the hormonally modulated epithelia of the epididymis, mammary gland, and uterus, in round spermatids in the testis, and in the corpora lutea in the ovary, Myak is also highly expressed in the aqueduct of the adult brain and in the brain and spinal cord of day 12.5 embryos, Mol. Reprod. Dev. 55:372-378, 2000. (C) 2000 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anterior gradient 2 (Agr2) genes encode secretory proteins, and play significant roles in anterior-posterior patterning and tumor metastasis. Agr2 transcripts were shown to display quite diverse tissue distribution in different species, and little was known about the cellular localization of Agr2 proteins. In this study, we identified an Agr2 homologue from gibe[ carp (Carassius auratus gibelio), and revealed the expression patterns and cellular localization during embryogenesis and in adult tissues. The full-length cDNA of CagAgr2 is 803 nucleotides (nt) with an open reading frame of 510 nt encoding 169 amino acids. The Agr2 C-terminus matches to the class I PDZ-interacting motif, suggesting that it might be a PDZ-binding protein. During embryogenesis, CagAgr2 was found to be transcribed in the mucus-secreting hatching gland from tailbud stage and later in the pharynx region, swim bladder and pronephric duct as revealed by RT-PCR and whole mount in situ hybridization. In the adult fish, its transcription was predominantly confined to the kidney, and lower transcription levels were also found in the intestine, ovary and gills. To further localize the Agr2 protein, the anti-CagAgr2 polyclonal antibody was produced and used for immunofluorescence observation. In agreement with mRNA expression data, the Agr2 protein was localized in the pronephric duct of 3dph larvae. In adult fish, Agr2 protein expression is confined to the renal collecting system with asymmetric distribution along the apical-basolateral axis. The data provided suggestive evidence that fish Agr2 might be involved in differentiation and secretory functions of kidney epithelium. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hierarchical equations of motion formalism for a quantum dissipation system in a grand canonical bath ensemble surrounding is constructed on the basis of the calculus-on-path-integral algorithm, together with the parametrization of arbitrary non-Markovian bath that satisfies fluctuation-dissipation theorem. The influence functionals for both the fermion or boson bath interaction are found to be of the same path integral expression as the canonical bath, assuming they all satisfy the Gaussian statistics. However, the equation of motion formalism is different due to the fluctuation-dissipation theories that are distinct and used explicitly. The implications of the present work to quantum transport through molecular wires and electron transfer in complex molecular systems are discussed. (c) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Edwardsielia tarda is one of the leading marine pathogens that can infect a wide range of cultured marine species. In this study, the acrR-acrAB cluster was cloned from TX1, a pathogenic E. tarda strain isolated from diseased fish. AcrR and AcrAB were found to be involved in resistance against acriflavine and methyl viologen, which positively regulate the expression of acrAB. AcrR negatively regulates its own expression and the expression of the acrAB operon, most likely by interacting with a 24-bp operator site that overlaps the putative promoter of acrA (PacrA). The repressive effect of AcrR on PacrA could be relieved by acriflavine, methyl viologen, and ethidium bromide, the presence of each of which enhanced transcription from PacrA. Interruption of the regulated expression of acrR by introducing into TX1 a plasmid that overexpresses acrR affected growth under stress conditions, AI-2 production, and bacterial virulence. In addition, mutational analyses identified a constitutively active AcrR mutant (named N215), which exhibits full repressor activity but is impaired in its ability to interact with the inducer. Overexpression of N215 produced the same kind of but moderately stronger effect on TX1 compared to that produced by overexpression of the wild-type acrR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Though one is led to believe that program transformation systems which perform source-to-source transformations enable the user to understand and appreciate the resulting source program, this is not always the case. Transformations are capable of behaving and/or interacting in unexpected ways. The user who is interested in understanding the whats, whys, wheres, and hows of the transformation process is left without tools for discovering them. I provide an initial step towards the solution of this problem in the form of an accountable source-to-source transformation system. It carefully records the information necessary to answer such questions, and provides mechanisms for the retrieval of this information. It is observed that though this accountable system allows the user access to relevant facts from which he may draw conclusions, further study is necessary to make the system capable of analyzing these facts itself.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immobilized liposome chromatography (ILC), the stationary phase of which has been regarded as a mimic biomembranes system was used to separate and analyze compounds interacting with liposome membrane in Danggui Buxue decoction, a combined prescription of traditional Chinese medicines (CPTCMs), and its compositions Radix Astragli and Radix Angelica Sinensis. More than 10 main peaks in the extract of Danggui Buxue decoction were resolved on the ILC column, suggesting that more than 10 components in the prescription have significant retention on ILC column. Ligustilide, astragaloside, TV and formononetin, three main bioactive ingredients in Danggui Buxue decoction, were found to have relatively significant, while ferulic acid, another bioactive ingredient in the prescription, relatively weak retention on ILC column. Effects of the eluent pH and amount of immobilized phosphatidylcholine (PC) on separation of interactional compounds in the extract of Danggui Buxue decoction were also investigated. It was found that these two factors strongly affected the retention of some interactional compounds. In addition, the fractions partitioned with different solvents from water extract of this combined prescription were evaluated with this ILC column system. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both animals and mobile robots, or animats, need adaptive control systems to guide their movements through a novel environment. Such control systems need reactive mechanisms for exploration, and learned plans to efficiently reach goal objects once the environment is familiar. How reactive and planned behaviors interact together in real time, and arc released at the appropriate times, during autonomous navigation remains a major unsolved problern. This work presents an end-to-end model to address this problem, named SOVEREIGN: A Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goal-oriented Navigation system. The model comprises several interacting subsystems, governed by systems of nonlinear differential equations. As the animat explores the environment, a vision module processes visual inputs using networks that arc sensitive to visual form and motion. Targets processed within the visual form system arc categorized by real-time incremental learning. Simultaneously, visual target position is computed with respect to the animat's body. Estimates of target position activate a motor system to initiate approach movements toward the target. Motion cues from animat locomotion can elicit orienting head or camera movements to bring a never target into view. Approach and orienting movements arc alternately performed during animat navigation. Cumulative estimates of each movement, based on both visual and proprioceptive cues, arc stored within a motor working memory. Sensory cues are stored in a parallel sensory working memory. These working memories trigger learning of sensory and motor sequence chunks, which together control planned movements. Effective chunk combinations arc selectively enhanced via reinforcement learning when the animat is rewarded. The planning chunks effect a gradual transition from reactive to planned behavior. The model can read-out different motor sequences under different motivational states and learns more efficient paths to rewarded goals as exploration proceeds. Several volitional signals automatically gate the interactions between model subsystems at appropriate times. A 3-D visual simulation environment reproduces the animat's sensory experiences as it moves through a simplified spatial environment. The SOVEREIGN model exhibits robust goal-oriented learning of sequential motor behaviors. Its biomimctic structure explicates a number of brain processes which are involved in spatial navigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How do reactive and planned behaviors interact in real time? How are sequences of such behaviors released at appropriate times during autonomous navigation to realize valued goals? Controllers for both animals and mobile robots, or animats, need reactive mechanisms for exploration, and learned plans to reach goal objects once an environment becomes familiar. The SOVEREIGN (Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goaloriented Navigation) animat model embodies these capabilities, and is tested in a 3D virtual reality environment. SOVEREIGN includes several interacting subsystems which model complementary properties of cortical What and Where processing streams and which clarify similarities between mechanisms for navigation and arm movement control. As the animat explores an environment, visual inputs are processed by networks that are sensitive to visual form and motion in the What and Where streams, respectively. Position-invariant and sizeinvariant recognition categories are learned by real-time incremental learning in the What stream. Estimates of target position relative to the animat are computed in the Where stream, and can activate approach movements toward the target. Motion cues from animat locomotion can elicit head-orienting movements to bring a new target into view. Approach and orienting movements are alternately performed during animat navigation. Cumulative estimates of each movement are derived from interacting proprioceptive and visual cues. Movement sequences are stored within a motor working memory. Sequences of visual categories are stored in a sensory working memory. These working memories trigger learning of sensory and motor sequence categories, or plans, which together control planned movements. Predictively effective chunk combinations are selectively enhanced via reinforcement learning when the animat is rewarded. Selected planning chunks effect a gradual transition from variable reactive exploratory movements to efficient goal-oriented planned movement sequences. Volitional signals gate interactions between model subsystems and the release of overt behaviors. The model can control different motor sequences under different motivational states and learns more efficient sequences to rewarded goals as exploration proceeds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lnx1 (Ligand of Numb protein X 1) and Lnx2 genes belong to a family of PDZ domain-containing RING finger domain E3 ubiquitin ligases. mRNA expression for both genes have been reported in early murine central nervous system. However, there have been limited reports with regards to the expression patterns for both the proteins in vivo. Hence, we have attempted to characterize the significance of these proteins in the context of morphology and physiology of the central nervous system. Through our studies, we have attempted to examine closely the expression of these two genes in the murine central nervous system. We have also looked at novel interacting ligands for both proteins. Interacting partners have been examined with particular relevance to possible roles of their interactions with LNX1 and LNX2 in the functioning of the nervous system. Moreover, we have performed loss-of-function studies by way of creation and characterization of knockout mice.