891 resultados para Intensity ratios


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We here present records of total organic carbon (TOC) and C37 alkenones, used as indicators for past primary productivity, from the western (WAS) and eastern Arabian Sea (EAS). New data from an open ocean site of the WAS upwelling area are compared with similar records from Ocean Drilling Program (ODP) Site 723 from the continental margin off Oman and MD 900963 from the EAS. These records together with other proxies used to reconstruct upwelling intensity, indicate periods of high productivity in tune with precessional forcing. On the basis of their phase relationship to boreal summer insolation they can be divided into three groups: in the WAS differences between monsoonal proxies (1) and productivity (2) document a combined signal of moderate SW monsoon winds and of strengthened and prolonged NE monsoon winds, whereas in the EAS phasing indicates maximum productivity (3) at times of stronger NE monsoon winds associated with precession-related maxima in ice volume.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Denmark Strait Overflow (DSO) today compensates for the northward flowing Norwegian and Irminger branches of the North Atlantic Current that drive the Nordic heat pump. During the Last Glacial Maximum (LGM), ice sheets constricted the Denmark Strait aperture in addition to ice eustatic/isostatic effects which reduced its depth (today ~630 m) by ~130 m. These factors, combined with a reduced north-south density gradient of the water-masses, are expected to have restricted or even reversed the LGM DSO intensity. To better constrain these boundary conditions, we present a first reconstruction of the glacial DSO, using four new and four published epibenthic and planktic stable-isotope records from sites to the north and south of the Denmark Strait. The spatial and temporal distribution of epibenthic delta18O and delta13C maxima reveals a north-south density gradient at intermediate water depths from sigma0 ~28.7 to 28.4/28.1 and suggests that dense and highly ventilated water was convected in the Nordic Seas during the LGM. However, extremely high epibenthic delta13C values on top of the Mid-Atlantic Ridge document a further convection cell of Glacial North Atlantic Intermediate Water to the south of Iceland, which, however, was marked by much lower density (sigma0 ~28.1). The north-south gradient of water density possibly implied that the glacial DSO was directed to the south like today and fed Glacial North Atlantic Deep Water that has underthrusted the Glacial North Atlantic Intermediate Water in the Irminger Basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we present evidence that the Holocene African monsoon system (AMS) varied in response to the eastern equatorial Atlantic sea-surface temperature (SST). Several short-term episodes of decreased moisture availability as a result of low eastern equatorial Atlantic SST are suggested by planktonic foraminiferal Mg/Ca ratios. These episodes promoted a weakening of the AMS and thus determined the timing and intensity of arid periods. Local sea-surface salinities also reveal regional patterns of precipitation in equatorial western Africa. The high eastern equatorial Atlantic SSTs occur in concert with seasonally increased insolation at low latitudes, suggesting a strong response of African monsoonal precipitation to oceanic conditions at low latitudes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present 40 Sm-Nd isotope measurements of the clay-size (<2 µm) fractions of sediments from the Southern Greenland rise (ODP-646) that span the last 365 kyr. These data track changes in the relative supply of fine particles carried into the deep Labrador Sea by the Western Boundary Under Current (WBUC) back to the fourth glacial-interglacial cycles. Earlier studies revealed three general sources of particles to the core site: (i) Precambrian crustal material from Canada, Greenland, and/or Scandinavia (North American Shield - NAS), (ii) Palaeozoic or younger crustal material from East Greenland, NW Europe, and/or western Scandinavia (Young Crust - YC) and (iii) volcanic material from Iceland and the Mid-Atlantic Ridge (MAR). Clay-size fractions from glacial sediments have the lowest Nd isotopic ratios. Supplies of young crustal particles were similar during glacial oxygen isotope stages (OIS) 2, 6, and 10. In contrast the mean volcanic contributions decreased relative to old craton material from OIS 10 to OIS 6 and then from OIS 6 to OIS 2. The glacial OIS 8 interval displays a mean Sm/Nd ratio similar to those of interglacials OIS 1, 5, and 9. Compared with other interglacials, OIS 7 was marked by a higher YC contribution but a similar ~30% MAR supply. The overall NAS contribution dropped by a factor of 2 during each glacial/interglacial transition, with the MAR contribution broadly replacing it during interglacials. To decipher between higher supplies and/or dilution, particle fluxes from each end member were estimated. Glacial NAS fluxes were systematically higher than interglacial fluxes. During the time interval examined, fine particle supplies to the Labrador Sea were strongly controlled by proximal ice-margin erosion and thus echoed the glacial stage intensity. In contrast, the WBUC-carried MAR supplies from the eastern basins did not change significantly throughout the last 365 kyr, except for a marked increase in surface-sediments that suggests unique modern conditions. Distal WBUC-controlled inputs from the Northern and NE North Atlantic seem to have been less variable than proximal supplies linked with glacial erosion rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During Integrated Ocean Drilling Program Expedition 302 (Arctic Coring Expedition (ACEX)) a more than 200 m thick sequence of Paleogene organic carbon (OC)-rich (black shale type) sediments was drilled. Here we present new biomarker data determined in ACEX sediment samples to decipher processes controlling OC accumulation and their paleoenvironmental significance during periods of Paleogene global warmth and proposed increased freshwater discharge in the early Cenozoic. Specific source-related biomarkers including n-alkanes, fatty acids, isoprenoids, carotenoids, hopanes/hopenes, hopanoic acids, aromatic terpenoids, and long-chain alkenones show a high variability of components, derived from marine and terrestrial origin. The distribution of hopanoic acid isomers is dominated by compounds with the biological 17beta(H), 21beta(H) configuration indicating a low level of maturity. On the basis of the biomarker data the terrestrial OC supply was significantly enriched during the late Paleocene and part of the earliest Eocene, whereas increased aquatic contributions and euxinic conditions of variable intensity were determined for the Paleocene-Eocene thermal maximum and Eocene thermal maximum 2 events as well as the middle Eocene time interval. Furthermore, samples from the middle Eocene are characterized by the occurrence of long-chain alkenones, high proportions of lycopane, and high ratios (>0.6) of (n-C35 + lycopane)/n-C31. The occurrence of C37-alkenenones, which were first determined toward the end of the Azolla freshwater event, indicates that the OC becomes more marine in origin during the middle Eocene. Preliminary UK'37- based sea surface temperature (SST) values display a longterm temperature decrease of about 15C during the time interval 49-44.5 Ma (25° to 10°C), coinciding with the global benthic d18O cooling trend after the early Eocene climatic optimum. At about 46 Ma, parallel with onset of ice-rafted debris, SST (interpreted as summer temperatures) decreased to values <15°C. For the late early Miocene a SST of 11°-15°C was determined. Most of the middle Eocene ACEX sediments are characterized by a smooth short-chain n-alkane distribution, which may point to natural oil-type hydrocarbons from leakage of petroleum reservoirs or erosion of related source rocks and redeposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present sea surface, upper thermocline, and benthic d18O data, as well as temperature and paleoproductivity proxy data, from the International Marine Global Change Study Program (IMAGES) Core MD06-3067 (6°31'N, 126°30'E, 1575 m water depth), located in the western equatorial Pacific Ocean within the flow path of the Mindanao Current. Our records reveal considerable glacial-interglacial and suborbital variability in the Mindanao Dome upwelling over the last 160 kyr. Dome activity generally intensified during glacial intervals resulting in cooler thermocline waters, whereas it substantially declined during interglacials, in particular in the early Holocene and early marine oxygen isotope stage (MIS) 5e, when upwelling waters did not reach the thermocline. During MIS 3 and MIS 2, enhanced surface productivity together with remarkably low SST and low upper ocean thermal contrast provide evidence for episodic glacial upwelling to the surface, whereas transient surface warming marks periodic collapses of the Mindanao Dome upwelling during Heinrich events. We attribute the high variability during MIS 3 and MIS 2 to changes in the El Niño Southern Oscillation state that affected boreal winter monsoonal winds and upper ocean circulation. Glacial upwelling intensified when a strong cyclonic gyre became established, whereas El Niño-like conditions during Heinrich events tended to suppress the cyclonic circulation, reducing Ekman transport. Thus, our findings demonstrate that variations in the Mindanao Dome upwelling are closely linked to the position and intensity of the tropical convection and also reflect far-field influences from the high latitudes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two sediment cores retrieved from the continental slope in the Benguela Upwelling System, GeoB 1706 (19°33.7'S 11°10.5'E) and GeoB 1711 (23°18.9'S, 12°22.6'E), reveal striking variations in planktonic foraminiferal abundances during the last 160,000 years. These fluctuations are investigated to assess changes in the intensity and position of the upwelling centres off Namibia. Four species make up over 95% of the variation within the core, and enable the record to be divided into episodes characterized by particular planktonic foraminiferal assemblages. The fossil assemblages have meaningful ecological significance when compared to those of the modern day and the relationship to their environment. The cold-water planktonic foraminifer, Neogloboquadrina pachyderma sinistral [N. pachyderma (s)], dominates the modern-day, coastal upwelling centres, and Neogloboquadrina pachyderma dextral and Globigerina bulloides characterize the fringes of the upwelling cells. Globorotalia inflata is representative of the offshore boundary between newly upwelled waters and the transitional, reduced nutrient levels of the subtropical waters. In the fossil record, episodes of high N. pachyderma (s) abundances are interpreted as evidence of increased upwelling intensity, and the associated increase in nutrients. The N. pachyderma (s) record suggests temporal shifts in the intensity of upwelling, and corresponding trophic domains, that do not follow the typical glacial-interglacial pattern. Periods of high N. pachyderma (s) abundance describe rapid, discrete events dominating isotope stages 3 and 2. The timing of these events correlates to the temporal shifts of the Angola-Benguela Front (Jansen et al., 1997) situated to the north of the Walvis Ridge. Absence of high abundances of N. pachyderma (s) from the continental slope of the southern Cape Basin indicates that Southern Ocean surface water advection has not exerted a major influence on the Benguela Current System. The coincidence of increased upwelling intensity with the movement of the Angola-Benguela Front can be interpreted mainly by changes in strength and zonality of the trade wind system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report results from the analysis of intact polar lipids (IPLs) in sediments from Ocean Drilling Program Sites 1257 and 1258. IPLs, constituting the cell membranes of living organisms, were detected in organic-lean sediments but not in underlying organic-rich black shales. Microbial activity in organic-lean sediments is likely due to sulfate-dependent oxidation of methane whereas difficulties detecting IPLs in black shales are interpreted to result from unfavorable signal-to-noise ratios due to low cell concentrations in combination with extremely high analytical noise created by uncharacterized organic matrix. IPLs found are consistent with a low-diversity community of archaea and bacteria. The concentrations of IPLs are more than one order of magnitude lower than those in Neogene deep subsurface sediments at the Peruvian margin, suggestive of significantly lower cell concentrations in Demerara Rise. This finding is consistent with inferred low rates of subsurface microbial activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Site 532 on the Walvis Ridge was sampled at 4000- to 800-year intervals from 2.24 to 2.60 Ma, spanning the three large glacial advances of the late Pliocene. An age model was created by correlating the oxygen isotope record to Site 607 with linear interpolations between tie-lines. The resultant age model differs from that in the site reports by more than 800,000 years, due to misidentification of a magnetic boundary. Sedimentation rates varied by an order of magnitude at this site, with minimum accumulation during glacial events. Interglacial intervals were charactrized by high marine production and high summer precipitation on land, while glacials had very low production and arid continental climate. During the large glacial events (Stages 96-100) conditions of low production and continental aridity reached their greatest intensity, but there is no evidence of a permanent mode shift in either marine or terrestrial records. Calcite concentration has a strong variation at obliquity frequencies, with maxima during interglacials, but occasionally shows a large amplitude at precessional frequencies as well, so that high concentrations occur in a few glacial intervals. As a result, color variation is not a reliable guide to glacial-scale cycles at this site. Composition of the phytoplankton assemblage is diverse and highly variable, and we have not been able to distinguish a clear indicator of upwelling-related production. Spectral analysis reveals obliquity and precessional signals in the pollen data, while several diatom records contain combination tones, indicating that these data represent a complicated response to both local and high-latitude forcing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inorganic geochemistry and mineralogy of Core 171B-1049C-8X, containing a Cretaceous/Tertiary boundary section, was investigated by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The ages of samples analyzed stretched from the latest Maastrichtian into the Danian. XRD measurements were made using the peak height method. A reduction in low-magnesium calcite and an increase in quartz were found above the spherule layer. Substantial amounts of dolomite were noted just above the spherule layer. XRF analyses were performed using the RHSMALL program to measure the abundance of major and minor elements. Replicate analyses for each technique were performed to assess the precision of the results. The section above the spherule bed was found to be characterized by peaks in many elements, including Si, Al, Fe, and Mg, as well as the following elemental ratios: Fe/Al, Ni/Al, Zr/Rb, and Rb/Sr'. Above the spherule bed, there were significant reductions in Ca, Sr/Ca, Ti/Al, K/Al, Rb/Al, Cr/Al, Ba/Al, biogenic Ba, and excess P.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic-rich sediments (sapropels) deposited in the Mediterranean are presumed to have formed during periods of increased productivity, and/or deep water oxygen depletion, possibly including the development of sulfidic conditions (euxinia). Geochemical redox proxies (Re, Mo, Mo isotopes, V, Fe/Al, and multiple S isotopes) in 8 sapropels from the Pleistocene confirm water column euxinic conditions of varying intensity during sapropel deposition. These same proxies indicate an oxic origin for hemipelagic sediments deposited between sapropel-forming episodes. In one intensively sampled sapropel, deposited between 1.450 and 1.458 Ma, changing concentrations of organic carbon, Ba, Re, Mo, V, and Fe/Al track one another closely, reflecting coupling between water column euxinia and biological productivity. Multiple S isotope data from this sapropel suggest that the redox interface where oxidative sulfur cycling occurred was present in the sediments during hemipelagic sedimentation, but moved into the water column during sapropel deposition. Molybdenum isotopes of these 8 sapropels encompass a range of values (d98Mo = +0.2 to +1.7), but are all 98Mo-depleted relative to seawater (d98Mo = +2.3 per mil), suggesting that quantitative removal of Mo did not occur. This finding contrasts with modern Black Sea sediments. In general, Re/Mo ratios in sapropels are greater than in modern seawater, implying that the water column was not sufficiently sulfidic during sapropel-forming episodes to induce complete removal of both these elements. Surprisingly, the heaviest d98Mo values are found within hemipelagic sediments. Very few of the hemipelagic samples preserve the negative d98Mo values commonly associated with modern oxic marine sediments. Many of the hemipelagic samples also contained higher concentrations of Re and Mo than are common in oxic sediments. These features may be attributable to diffusion from the sapropels of a 98Mo-enriched component into the hemipelagic sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abundant and various diagenetic carbonates were recovered from a 1084-m-thick, Quaternary to lower Miocene section at ODP Site 799 in the Japan Sea. Petrographic, XRD, SEM, EDS-chemical, and isotopic analyses revealed wide variations in occurrence and textural relations and complex mineralogy and chemistry. Diagenetic carbonates include calcite, calcium-rich rhodochrosite, iron- and manganese-rich magnesite, iron- and manganese-rich dolomite and ankerite, and iron- and manganeserich lansfordite (hydrous Mg-carbonate). Rhodochrosite commonly occurs as small, solid nodules and semi-indurated, thin layers in bioturbated, mottled sediments of Units I and II (late Miocene to Quaternary). Lansfordite occurs as unindurated nodules and layers in Unit II (late Miocene and Pliocene), whereas magnesite forms indurated beds a few centimeters thick in slightly bioturbated-to-faintly laminated sediments of Unit III (middle and late Miocene). Some rhodochrosite nodules have dark-colored, pyritic cores, and some pyrite-rhodochrosite nodules are overgrown by and included within magnesite beds. Dolomite and ankerite tend to form thick beds (>10 cm) in bedded to laminated sediments of Units III, IV, and V (early to late Miocene). Calcite occurs sporadically throughout the Site 799 sediments. The d18O values of carbonates and the interstitial waters, and the measured geothermal gradient indicate that almost all of the Site 799 carbonates are not in isotopic equilibrium with the ambient waters, but were precipitated in the past when the sediments were at shallower depths. Depths of precipitation obtained from the d18O of carbonates span from 310 to 510 mbsf for magnesite and from 60 to 580 mbsf for dolomite-ankerite. Rhodochrosite and calcite are estimated to have formed within sediments at depths shallower than 80 mbsf. Diagenetic history in the Site 799 sediments have been determined primarily by the environment of deposition; in particular, by the oxidation-reduction state of the bottom waters and the alkalinity level of the interstitial waters. Under the well-oxygenated bottom-water conditions in the late Miocene and Pliocene, manganese initially accumulated on the seafloor as hydrogenous oxides and subsequently was mobilized and reprecipitated as rhodochrosite within the shallow sulfate-reduction, sub-oxic zone. Precipitation of lansfordite occurred in the near-surface sediments with abundant organic carbon and an extremely high alkalinity during the latest Miocene and Pliocene. The lansfordite was transformed to magnesite upon burial in the depth interval 310 to 510 mbsf. Dolomite first precipitated at shallow depths in Mn-poor, anoxic, moderately biocalcareous sediments of early to late Miocene. With increasing temperature and depth, the dolomite recrystallized and reequilibrated with ambient waters at depths below about 400 mbsf.