955 resultados para Integrin Affinity Modulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benzodiazepines act at the major isoforms of GABA type A receptors where they potentiate the current evoked by the agonist GABA. The underlying mechanism of this potentiation is poorly understood, but hypothesized to be related to the mechanism that links agonist binding to channel opening in these ligand activated ion channels. The loop F of the ?(1) and the ?(2) subunit have been implicated in channel gating, and loop F of the ?(2) subunit in the modulation by benzodiazepines. We have identified the conservative point mutation Y168F located N-terminally of loop F in the ?(1) subunit that fails to affect agonist properties. Interestingly, it disrupts modulation by benzodiazepines, but leaves high affinity binding to the benzodiazepine binding site intact. Modulation by barbiturates and neurosteroids is also unaffected. Residue ?(1) Y168 is not located either near the binding pockets for GABA, or for benzodiazepines, or close to the loop F of the ?(2) subunit. Our results support the fact, that broader regions of ligand gated receptors are conformationally affected by the binding of benzodiazepines. We infer that also broader regions could contribute to signaling from GABA agonist binding to channel opening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The alpha4beta1 integrin is an essential adhesion molecule for recruitment of circulating lymphocytes into lymphoid organs and peripheral sites of inflammation. Chemokines stimulate alpha4beta1 adhesive activity allowing lymphocyte arrest on endothelium and subsequent diapedesis. Activation of the GTPase Rac by the guanine-nucleotide exchange factor Vav1 promoted by CXCL12 controls T lymphocyte adhesion mediated by alpha4beta1. In this study, we investigated the role of DOCK2, a lymphocyte guanine-nucleotide exchange factor also involved in Rac activation, in CXCL12-stimulated human T lymphocyte adhesion mediated by alpha4beta1. Using T cells transfected with DOCK2 mutant forms defective in Rac activation or with DOCK2 small interfering RNA, we demonstrate that DOCK2 is needed for efficient chemokine-stimulated lymphocyte attachment to VCAM-1 under shear stress. Flow chamber, soluble binding, and cell spreading assays identified the strengthening of alpha4beta1-VCAM-1 interaction, involving high affinity alpha4beta1 conformations, as the adhesion step mainly controlled by DOCK2 activity. The comparison of DOCK2 and Vav1 involvement in CXCL12-promoted Rac activation and alpha4beta1-dependent human T cell adhesion indicated a more prominent role of Vav1 than DOCK2. These results suggest that DOCK2-mediated signaling regulates chemokine-stimulated human T lymphocyte alpha4beta1 adhesive activity, and that cooperation with Vav1 might be required to induce sufficient Rac activation for efficient adhesion. In contrast, flow chamber experiments using lymph node and spleen T cells from DOCK2(-/-) mice revealed no significant alterations in CXCL12-promoted adhesion mediated by alpha4beta1, indicating that DOCK2 activity is dispensable for triggering of this adhesion in mouse T cells, and suggesting that Rac activation plays minor roles in this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aggretin, a potent platelet activator, was isolated from Calloselasma rhodostoma venom, and 30-amino acid N-terminal sequences of both subunits were determined. Aggretin belongs to the heterodimeric snake C-type lectin family and is thought to activate platelets by binding to platelet glycoprotein alpha(2)beta(1). We now show that binding to glycoprotein (GP) Ib is also required. Aggretin-induced platelet activation was inhibited by a monoclonal antibody to GPIb as well as by antibodies to alpha(2)beta(1). Binding of both of these platelet receptors to aggretin was confirmed by affinity chromatography. No binding of other major platelet membrane glycoproteins, in particular GPVI, to aggretin was detected. Aggretin also activates platelets from Fc receptor gamma chain (Fcgamma)-deficient mice to a greater extent than those from normal control mice, showing that it does not use the GPVI/Fcgamma pathway. Platelets from Fcgamma-deficient mice expressed fibrinogen receptors normally in response to collagen, although they did not aggregate, indicating that these platelets may partly compensate via other receptors including alpha(2)beta(1) or GPIb for the lack of the Fcgamma pathway. Signaling by aggretin involves a dose-dependent lag phase followed by rapid tyrosine phosphorylation of a number of proteins. Among these are p72(SYK), p125(FAK), and PLCgamma2, whereas, in comparison with collagen and convulxin, the Fcgamma subunit neither is phosphorylated nor coprecipitates with p72(SYK). This supports an independent, GPIb- and integrin-based pathway for activation of p72(SYK) not involving the Fcgamma receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classical benzodiazepines, for example diazepam, interact with alpha(x)beta(2)gamma(2) GABA(A) receptors, x = 1, 2, 3, 5. Little is known about effects of alpha subunits on the structure of the binding pocket. We studied here the interaction of the covalently reacting diazepam analog 7-Isothiocyanato-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one (NCS compound) with alpha(1)H101Cbeta(2)gamma(2) and with receptors containing the homologous mutation, alpha(2)H101Cbeta(2)gamma(2), alpha(3)H126Cbeta(2)gamma(2) and alpha(5)H105Cbeta(2)gamma(2). This comparison was extended to alpha(6)R100Cbeta(2)gamma(2) receptors as this mutation conveys to these receptors high affinity towards classical benzodiazepines. The interaction was studied at the ligand binding level and at the functional level using electrophysiological techniques. Results indicate that the geometry of alpha(6)R100Cbeta(2)gamma(2) enables best interaction with NCS compound, followed by alpha(3)H126Cbeta(2)gamma(2), alpha(1)H101Cbeta(2)gamma(2) and alpha(2)H101Cbeta(2)gamma(2), while alpha(5)H105Cbeta(2)gamma(2) receptors show little interaction. Our results allow conclusions about the relative apposition of alpha(1)H101 and homologous positions in alpha(2), alpha(3), alpha(5) and alpha(6) with the position occupied by -Cl in diazepam. During this study we found evidence for the presence of a novel site for benzodiazepines that prevents modulation of GABA(A) receptors via the classical benzodiazepine site. The novel site potentially contributes to the high degree of safety to some of these drugs. Our results indicate that this site may be located at the alpha/beta subunit interface pseudo-symmetrically to the site for classical benzodiazepines located at the alpha/gamma interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: beta(3)-Integrins are involved in platelet aggregation via alpha(IIb)beta(3) [glycoprotein (GP)IIb-GPIIIa], and in angiogenesis via endothelial alpha(V)beta(3). Cross-reactive ligands with antiaggregatory and proangiogenic effects, both desirable in peripheral vasculopathies, have not yet been described. OBJECTIVES: In vitro and in vivo characterization of antiaggregatory and proangiogenic effects of two recombinant human Fab fragments, with emphasis on beta(3)-integrins. METHODS: Recombinant Fab fragments were obtained by phage display technology. Specificity, affinity and IC(50) were determined by immunodot assays, enzyme-linked immunosorbent assay (ELISA), and Scatchard plot analysis, and by means of human umbilical vein endothelial cells (HUVECs). Functional analyses included ELISA for interaction with fibrinogen binding to GPIIb-GPIIIa, flow cytometry for measurement of activation parameters and competitive inhibition experiments, human platelet aggregometry, and proliferation, tube formation and the chorioallantoic membrane (CAM) assay for measurement of angiogenic effects. RESULTS: We observed specific and high-affinity binding to an intact GPIIb-GPIIIa receptor complex of two human Fab autoantibody fragments, with no platelet activation. Dose-dependent fibrinogen binding to GPIIb-GPIIIa and platelet aggregation were completely inhibited. One Fab fragment was competitively inhibited by abciximab and its murine analog monoclonal antibody (mAb) 7E3, whereas the other Fab fragment bound to cultured HUVECs, suggesting cross-reactivity with alpha(V)beta(3), and also demonstrated proangiogenic effects in tube formation and CAM assays. CONCLUSIONS: These Fab fragments are the first entirely human anti-GPIIb-GPIIIa Fab fragments with full antiaggregatory properties; furthermore, they do not activate platelets. The unique dual-specificity anti-beta(3)-integrin Fab fragment may represent a new tool for the study and management of peripheral arterial vasculopathies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Janus kinases (JAKs) are central signaling molecules in cytokine receptor cascades. Although they have also been implicated in chemokine receptor signaling, this function continues to be debated. To address this issue, we established a nucleofection model in primary, nonactivated mouse T lymphocytes to silence JAK expression and to evaluate the ability of these cells to home to lymph nodes. Reduced JAK1 and JAK2 expression impaired naïve T-cell migration in response to gradients of the chemokines CXCL12 and CCL21. In vivo homing of JAK1/JAK2-deficient cells to lymph nodes decreased, whereas intranodal localization and motility were unaffected. JAK1 and JAK2 defects altered CXCL12- and CCL21-triggered ezrin/radixin/moesin (ERM) dephosphorylation and F-actin polymerization, as well as activation of lymphocyte function-associated Ag-1 and very late Ag-4 integrins. As a result, the cells did not adhere firmly to integrin substrates in response to these chemokines. The results demonstrate that JAK1/JAK2 participate in chemokine-induced integrin activation and might be considered a target for modulation of immune cell extravasation and therefore, control of inflammatory reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In normal lymphocytes an “inside-out” signal up-regulating integrin adhesion is followed by a ligand mediated “outside-in” signal for cell spreading. Although PKC mediates both events, distinct roles were found for different PLCs. The inhibition of phosphatidylinositol specific PLC decreased both cell adhesion and spreading on fibronectin in T cell receptor/CD28 activated peripheral blood T cells. However, inhibition of phosphatidylcholine specific PLC only blocked cell spreading and did not affect adhesion, indicating that “inside-out” signaling for the integrin α4β1 proceeds through phosphatidylinositol specific PLC and PKC, while the “outside-in” signal utilizes phosphatidylcholine specific PLC and PKC. Furthermore, β1 integrin chain mediated morphological changes in the T lymphocytic cell line HPB-ALL directly paralleled PKA activation, treatment of these cells with an inhibitory anti-β1 antibody blocked PKA activation and cell spreading, and this inhibition could be overcome by activating adenylate cyclase. Furthermore, inhibition of PKA was found to decrease the overall strength of cell adhesion or cellular avidity without affecting individual receptor affinity for soluble ligand. ^ When HPB-ALL cells interact with immobilized FN, two separate morphological phenotypes can be induced. Some cells flattened their cell body into a triangular shape and begin to migrate, while others extended a pseudopod from their stationary cell body. This second morphology recapitulates the shape changes observed during transendothelial migration. During these morphological changes, α4β1 integrins are internalized into endocytic vesicles that ultimately accumulate at the juncture between the cell body and an extending pseudopod. From this juncture, they are rapidly transported down the length of the pseudopod to its most distal end. ^ In addition to an accumulation of integrin containing vesicles, the pseudopod base was found to have increased amounts of the small GTPase RhoA and active PKA. The inhibition of PKA or RhoA resulted in lymphocytes with similar aberrant stellate morphologies. Furthermore, inhibition of PKA blocked the α4β1 mediated phosphorylation of RhoA. The co-localization of active PKA, RhoA and integrin containing endocytic vesicles indicates that integrin triggering can cause the rapid redistribution and activation of key signaling intermediates and raises the possibility that regulation of lymphocyte morphology by PKA and RhoA is through adhesion receptor recycling. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously, it has been shown that laminin will self-assemble by a two-step calcium-dependent process using end-domain interactions (Yurchenco, P. D., Tsi-library, E. C., Charonis, A. S., and Furthmayr, H. (1985) J. Biol. Chem. 260, 7636-7644). We now find that heparin, at low concentrations, modifies this polymerization by driving the equilibrium further toward aggregation, by producing a denser polymer, and by inducing aggregation in the absence of calcium. This effect on self-assembly is specific in that it is observed with heparin but not with several heparan sulfates or other glycosaminoglycans: it correlates with affinity and depends on the degree of polysaccharide sulfation. Heparin binds to laminin in a calcium-dependent manner with a single class of interaction (KD = 118 +/- 18 nM) and with a binding capacity of one heparin for two laminins. We find the long arm globule (E3) is the only laminin domain which exhibits substantial heparin binding: heparin binds E3 with an affinity (KD = 94 +/- 12 nM) and calcium dependence similar to that for intact laminin. These data strongly suggest that heparin modifies laminin assembly by binding to pairs of long arm globular domains. As a result the polymer may be stabilized at domain E3 and laminin interdomain interactions induced or modified. We further postulate that heparins may act in vivo as specific regulators of the structure and functions of basement membranes by both altering the laminin matrix and by displacing weakly binding heparan sulfates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preferential phosphorylation of specific proteins by cAMP-dependent protein kinase (PKA) may be mediated in part by the anchoring of PKA to a family of A-kinase anchor proteins (AKAPs) positioned in close proximity to target proteins. This interaction is thought to depend on binding of the type II regulatory (RII) subunits to AKAPs and is essential for PKA-dependent modulation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptor, the L-type Ca2+ channel, and the KCa channel. We hypothesized that the targeted disruption of the gene for the ubiquitously expressed RIIα subunit would reveal those tissues and signaling events that require anchored PKA. RIIα knockout mice appear normal and healthy. In adult skeletal muscle, RIα protein levels increased to partially compensate for the loss of RIIα. Nonetheless, a reduction in both catalytic (C) subunit protein levels and total kinase activity was observed. Surprisingly, the anchored PKA-dependent potentiation of the L-type Ca2+ channel in RIIα knockout skeletal muscle was unchanged compared with wild type although it was more sensitive to inhibitors of PKA–AKAP interactions. The C subunit colocalized with the L-type Ca2+ channel in transverse tubules in wild-type skeletal muscle and retained this localization in knockout muscle. The RIα subunit was shown to bind AKAPs, although with a 500-fold lower affinity than the RIIα subunit. The potentiation of the L-type Ca2+ channel in RIIα knockout mouse skeletal muscle suggests that, despite a lower affinity for AKAP binding, RIα is capable of physiologically relevant anchoring interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anchorage and growth factor independence are cardinal features of the transformed phenotype. Although it is logical that the two pathways must be coregulated in normal tissues to maintain homeostasis, this has not been demonstrated directly. We showed previously that down-modulation of β1-integrin signaling reverted the malignant behavior of a human breast tumor cell line (T4–2) derived from phenotypically normal cells (HMT-3522) and led to growth arrest in a three-dimensional (3D) basement membrane assay in which the cells formed tissue-like acini (14). Here, we show that there is a bidirectional cross-modulation of β1-integrin and epidermal growth factor receptor (EGFR) signaling via the mitogen-activated protein kinase (MAPK) pathway. The reciprocal modulation does not occur in monolayer (2D) cultures. Antibody-mediated inhibition of either of these receptors in the tumor cells, or inhibition of MAPK kinase, induced a concomitant down-regulation of both receptors, followed by growth-arrest and restoration of normal breast tissue morphogenesis. Cross-modulation and tissue morphogenesis were associated with attenuation of EGF-induced transient MAPK activation. To specifically test EGFR and β1-integrin interdependency, EGFR was overexpressed in nonmalignant cells, leading to disruption of morphogenesis and a compensatory up-regulation of β1-integrin expression, again only in 3D. Our results indicate that when breast cells are spatially organized as a result of contact with basement membrane, the signaling pathways become coupled and bidirectional. They further explain why breast cells fail to differentiate in monolayer cultures in which these events are mostly uncoupled. Moreover, in a subset of tumor cells in which these pathways are misregulated but functional, the cells could be “normalized” by manipulating either pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The activity of l-type Ca2+ channels is increased by dihydropyridine (DHP) agonists and inhibited by DHP antagonists, which are widely used in the therapy of cardiovascular disease. These drugs bind to the pore-forming α1 subunits of l-type Ca2+ channels. To define the minimal requirements for DHP binding and action, we constructed a high-affinity DHP receptor site by substituting a total of nine amino acid residues from DHP-sensitive l-type α1 subunits into the S5 and S6 transmembrane segments of domain III and the S6 transmembrane segment of domain IV of the DHP-insensitive P/Q-type α1A subunit. The resulting chimeric α1A/DHPS subunit bound DHP antagonists with high affinity in radioligand binding assays and was inhibited by DHP antagonists with high affinity in voltage clamp experiments. Substitution of these nine amino acid residues yielded 86% of the binding energy of the l-type α1C subunit and 92% of the binding energy of the l-type α1S subunit for the high-affinity DHP antagonist PN200–110. The activity of chimeric Ca2+ channels containing α1A/DHPS was increased 3.5 ± 0.7-fold by the DHP agonist (−)Bay K8644. The effect of this agonist was stereoselective as in l-type Ca2+ channels since (+) Bay K8644 inhibited the activity of α1A/DHPS. The results show conclusively that DHP agonists and antagonists bind to a single receptor site at which they have opposite effects on Ca2+ channel activity. This site contains essential components from both domains III and IV, consistent with a domain interface model for binding and allosteric modulation of Ca2+ channel activity by DHPs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrin-mediated cell adhesion to extracellular matrices provides signals essential for cell cycle progression and differentiation. We demonstrate that substrate-dependent changes in the conformation of adsorbed fibronectin (Fn) modulated integrin binding and controlled switching between proliferation and differentiation. Adsorption of Fn onto bacterial polystyrene (B), tissue culture polystyrene (T), and collagen (C) resulted in differences in Fn conformation as indicated by antibody binding. Using a biochemical method to quantify bound integrins in cultured cells, we found that differences in Fn conformation altered the quantity of bound α5 and β1 integrin subunits but not αv or β3. C2C12 myoblasts grown on these Fn-coated substrates proliferated to different levels (B > T > C). Immunostaining for muscle-specific myosin revealed minimal differentiation on B, significant levels on T, and extensive differentiation on C. Differentiation required binding to the RGD cell binding site in Fn and was blocked by antibodies specific for this site. Switching between proliferation and differentiation was controlled by the levels of α5β1 integrin bound to Fn, and differentiation was inhibited by anti-α5, but not anti-αv, antibodies, suggesting distinct integrin-mediated signaling pathways. Control of cell proliferation and differentiation through conformational changes in extracellular matrix proteins represents a versatile mechanism to elicit specific cellular responses for biological and biotechnological applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A protein engineering strategy based on efficient and focused mutagenesis implemented by codon-based mutagenesis was developed. Vitaxin, a humanized version of the antiangiogenic antibody LM609 directed against a conformational epitope of the αvβ3 integrin complex, was used as a model system. Specifically, focused mutagenesis was used in a stepwise fashion to rapidly improve the affinity of the antigen binding fragment by greater than 90-fold. In the complete absence of structural information about the Vitaxin-αvβ3 interaction, phage-expressed antibody libraries for all six Ig heavy and light chain complementarity-determining regions were expressed and screened by a quantitative assay to identify variants with improved binding to αvβ3. The Vitaxin variants in these libraries each contained a single mutation, and all 20 amino acids were introduced at each complementarity-determining region residue, resulting in the expression of 2,336 unique clones. Multiple clones displaying 2- to 13-fold improved affinity were identified. Subsequent expression and screening of a library of 256 combinatorial variants of the optimal mutations identified from the primary libraries resulted in the identification of multiple clones displaying greater than 50-fold enhanced affinity. These variants inhibited ligand binding to receptor more potently as demonstrated by inhibition of cell adhesion and ligand competition assays. Because of the limited mutagenesis and combinatorial approach, Vitaxin variants with enhanced affinity were identified rapidly and required the synthesis of only 2,592 unique variants. The use of such small focused libraries obviates the need for phage affinity selection approaches typically used, permitting the use of functional assays and the engineering of proteins expressed in mammalian cell culture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ca2+ and its ubiquitous intracellular receptor calmodulin (CaM) are required in the nervous system, among a host of cellular responses, for the modulation of several important enzymes and ion channels involved in synaptic efficacy and neuronal plasticity. Here, we report that CaM can be replaced by the neuronal calcium sensor NCS-1 both in vitro and in vivo. NCS-1 is a calcium binding protein with two Ca(2+)-binding domains that shares only 21% of homology with CaM. We observe that NCS-1 directly activates two Ca2+/CaM-dependent enzymes (3':5'-cyclic nucleotide phosphodiesterase and protein phosphatase calcineurin). Co-activation of nitric oxide synthase by NCS-1 and CaM results in a higher activity than with CaM alone. Moreover, NCS-1 is coexpressed with calcineurin and nitric oxide synthase in several neuron populations. Finally, injections of NCS-1 into calmodulin-defective cam1 Paramecium partially restore wildtype behavioral responses. With this highly purified preparation of NCS-1, we have obtained crystals suitable for crystallographic structure studies. NCS-1, despite its very different structure, distribution, and Ca(2+)-binding affinity as compared with CaM, can substitute for or potentiate CaM functions. Therefore, NCS-1 represents a novel protein capable of mediating multiple Ca(2+)-signaling pathways in the nervous system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activation of prolactin (PRL)-dependent signaling occurs as the result of ligand-induced dimerization of receptor (PRLr). Although three PRLr isoforms (short, intermediate, and long) have been characterized and are variably coexpressed in PRL-responsive tissues, the functional effects of ligand-induced PRLr isoform heterodimerization have not been examined. To determine whether heterodimeric PRLr complexes were capable of ligand-induced signaling and cellular proliferation, chimeras consisting of the extracellular domain of either the alpha or beta subunit of human granulocyte-macrophage colony-stimulating factor receptor (GM-CSFr) and the intracellular domain of the rat intermediate or short PRLr isoforms (PRLr-I or PRLr-S) were synthesized. Because high affinity binding of GM-CSF is mediated by the extracellular domain of one alpha and beta GM-CSFr pair, use of GM-CSFr/PRLr chimera specifically directed the dimerization of the PRLr intracellular domains within ligand-receptor complexes. Stable transfection of these constructs into the Ba/F3 line was demonstrated by Northern blot and immunoprecipitation analyses. Flow cytometry revealed specific binding of a phycoerythrin-conjugated human GM-CSF to the transfectants, confirming cell surface expression of the chimeric receptors. When tested for their ability to proliferate in response to GM-CSF, only chimeric transfectants expressing GM-CSFr/PRLr-I homodimers demonstrated significant [3H]thymidine incorporation. GM-CSF stimulation of transfectants expressing either GM-CSFr/PRLr-S homodimers or GM-CSFr/PRLr-S+1 heterodimers failed to induce proliferation. Consistent with these data, the GM-CSF-induced activation of two phosphotyrosine kinases, Jak2 and Fyn, was observed only in homodimeric GM-CSFr/PRLr-I transfectants. These results show that the PRLr-S functions as a dominant negative isoform, down-regulating both signaling and proliferation mediated by the receptor complex. Thus, structural motifs necessary for Jak2 and Fyn activation within the carboxy terminus of the PRLr-I, absent in the PRLr-S, are required in each member of the dimeric PRLr complex.