992 resultados para Instrumentation: spectrographs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A strain gauge instrumentation trial on a high pressure die casting ‘HPDC’ die was compared to a corresponding simulation model using Magmasoft® casting simulation software at two strain gauge rosette locations. The strains were measured during the casting cycle, from which the von Mises stress was determined and then compared to the simulation model. The von Mises stress from the simulation model correlated well with the findings from the instrumentation trial, showing a difference of 5.5%, ~ 10 MPa for one strain gauge rosette located in an area of low stress gradient. The second rosette was in a region of steep stress gradient, which resulted in a difference of up to 40%, ~40 MPa between the simulation and instrumentation results. Factors such as additional loading from die closure force or metal injection pressure which are not modelled by Magmasoft® were seen to have very little influence on the stress in the die, less than 7%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The injection stretch blow moulding process is used to manufacture PET containers used in the soft drinks and carbonated soft drinks industry. The process consists of a test tube like specimen known as a preform which is heated, stretch and blown into a mould to form the container. This research is focused on developing a validated simulation of the process thus enabling manufacturers to design their products in a virtual environment without the need to waste time, material and energy. The simulation has been developed using the commercial FEA package Abaqus and has been validated using state of the art data acquisition system consisting of measurements for preform temperature (inner and outer wall) using a device known as THERMOscan (Figure 1), stretch rod force and velocity, internal pressure and air temperature inside the preform using an instrumented stretch rod and the?exact?timing of when the preform touches the mould wall using contact sensors.? In addition, validation studies have also been performed by blowing a perform without a mould and using high sped imaging technology in cooperation with an advanced digital image correlation system (VIC 3D) to provided new quantitative information on the behaviour of PET during blowing.? The approach has resulted in a realistic simulation in terms of accurate input parameters, preform shape evolution and prediction of final properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the laser-plasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented at the first workshop on 'Instrumentation for Diagnostics and Control of Laser-accelerated Proton (Ion) Beams' in Abingdon, UK. It includes radiochromic film (RCF), image plates (IP), micro-channel plates (MCP), Thomson spectrometers, prompt inline scintillators, time and space-resolved interferometry (TASRI) and nuclear activation schemes. Repetition-rated instrumentation requirements for target metrology are also addressed. (C) 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the challenges the tidal power industry faces, is the requirement of cost effective, reliable but highly accurate acquisition of flow data. Different methods are required , applications range over different spatial and temporal scales. This report assembles in the first sections, theoretical background information on acoustic Doppler Velocimetry and RADAR measurements. The use of existing expertise in field tests of marine vehicles is discussed next, followed by a discussion of issues relating to recreating field conditions in laboratory environments. The last three sections present practical applications of various methods performed in field conditions. While progress has been made over the last years, this overview highlights the challenges in full scale field measurements and knowledge gaps in the industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. Close-in, giant planets are expected to influence their host stars via tidal or magnetic interaction. But are these effects in X-rays strong enough in suitable targets known so far to be observed with today's instrumentation? Aims: The υ And system, an F8V star with a Hot Jupiter, was observed to undergo cyclic changes in chromospheric activity indicators with its innermost planet's period. We aim to investigate the stellar chromospheric and coronal activity over several months. Methods: We therefore monitored the star in X-rays as well as at optical wavelengths to test coronal and chromospheric activity indicators for planet-induced variability, making use of the Chandra X-ray Observatory as well as the echelle spectrographs FOCES and HRS at Calar Alto (Spain) and the Hobby-Eberly Telescope (Texas, US). Results: The stellar activity level is low, as seen both in X-rays as in Ca ii line fluxes; the chromospheric data show variability with the stellar rotation period. We do not find activity variations in X-rays or in the optical that can be traced back to the planet. Conclusions: Gaining observational evidence of star-planet interactions in X-rays remains challenging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When a planet transits its host star, it blocks regions of the stellar surface from view; this causes a distortion of the spectral lines and a change in the line-of-sight (LOS) velocities, known as the Rossiter-McLaughlin (RM) effect. Since the LOS velocities depend, in part, on the stellar rotation, the RM waveform is sensitive to the star-planet alignment (which provides information on the system’s dynamical history). We present a new RM modelling technique that directly measures the spatially-resolved stellar spectrum behind the planet. This is done by scaling the continuum flux of the (HARPS) spectra by the transit light curve, and then subtracting the infrom the out-of-transit spectra to isolate the starlight behind the planet. This technique does not assume any shape for the intrinsic local profiles. In it, we also allow for differential stellar rotation and centre-to-limb variations in the convective blueshift. We apply this technique to HD 189733 and compare to 3D magnetohydrodynamic (MHD) simulations. We reject rigid body rotation with high confidence (>99% probability), which allows us to determine the occulted stellar latitudes and measure the stellar inclination. In turn, we determine both the sky-projected (λ ≈ −0.4 ± 0.2◦) and true 3D obliquity (ψ ≈ 7+12 −4 ◦ ). We also find good agreement with the MHD simulations, with no significant centre-to-limb variations detectable in the local profiles. Hence, this technique provides a new powerful tool that can probe stellar photospheres, differential rotation, determine 3D obliquities, and remove sky-projection biases in planet migration theories. This technique can be implemented with existing instrumentation, but will become even more powerful with the next generation of high-precision radial velocity spectrographs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

THE ninth edition of the International Conference on Remote Engineering and Virtual Instrumentation (REV) [1] was held at the Faculty of Engineering of the University of Deusto, Bilbao (Spain), from the 4th to the 6th of July, 2012. A world-class research community in the subject of remote and virtual laboratories joined the event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fermi patches in quasi-two dimensional charge density waves (CDW) have not described the connection to superconductivity (SC) according to theory adequately at this point in time. The connection between CDW and SC in the quasi-two dimensional material CuxTiSe2 is an interesting one which might reveal mechanisms in unconventional superconductors. A previous Brock graduate student grew crystals of CuxTiSe2. The precise doping of the samples was not known. In order to determine the doping parameter x in CuxTiSe2, a sensitive resistivity measurement system was necessary. A new resistivity measurement system was designed and implemented utilizing an Infrared Labs HDL-10 He3 cryostat. By comparing with data from the literature, doping of two samples was investigated using the new measurement system and a Quantum Design Magnetic Property Measurement System (MPMS). Methods for determining the doping revealed that the old resistivity system would not be able to determine the CDW transition temperature of highly doped samples or doping for elongated samples due to electronic noise. Doping in one sample was found to be between x=0.06 and x=0.065. Values of doping in the second sample had a discrepancy but could be explained by incorrect sample orientation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malgré la préoccupation croissante des chercheurs et praticiens pour la santé psychologique au travail, le concept de bien-être vécu au travail est encore mal compris de la communauté scientifique. En effet, peu d’efforts ont été consacrés à ce jour pour développer des connaissances sur le bien-être psychologique au travail arrimées à la réalité des employés. Cette thèse a donc pour objectif de développer une conceptualisation du bien-être psychologique au travail et une instrumentation psychométriquement fiable lui étant rattachée. Pour ce faire, deux études ont été réalisées. La première, de nature qualitative et exploratoire, fut menée auprès de 20 travailleurs canadiens francophones afin de répertorier, à partir d’incidents critiques vécus par ceux-ci, des manifestations de bien-être psychologique au travail. Celles-ci ont pu être classifiées selon un modèle en 2 axes, soit la sphère de référence dans laquelle le bien-être psychologique au travail se vit et la directionnalité selon laquelle il se développe. Ce modèle a ensuite été comparé aux conceptualisations génériques du bien-être psychologique existantes, et cette analyse a permis d’étayer la validité convergente et divergente du modèle. Dans un deuxième temps, l’Indice de bien-être psychologique au travail (IBEPT) a été créé sur la base des manifestations relevées lors de l’étude qualitative, afin d’en assurer la validité de contenu. Une version expérimentale de l’instrument a ensuite été soumise à une expérimentation auprès de 1080 travailleurs québécois. Les analyses factorielles exploratoires révèlent une structure interne en 25 items reflétant 5 dimensions, représentant elles-mêmes un construit de second ordre. La validité de construit de cette conceptualisation a ensuite été étudiée par l’analyse des intercorrélations avec une série de mesures du bien-être et de la détresse psychologique génériques. Les résultats appuient la validité convergente de l’instrument, et démontrent également sa validité divergente. Enfin, l’instrument affiche une cohérence interne satisfaisante. Au terme de cette recherche doctorale, les résultats des deux études sont interprétés en fonction de l’état actuel des connaissances sur le bien-être psychologique, les limites des études sont énoncées, et des pistes de recherche future sont avancées.