900 resultados para Inseminacao artificial : Suinos
Resumo:
Studies of orthographic skills transfer between languages focus mostly on working memory (WM) ability in alphabetic first language (L1) speakers when learning another, often alphabetically congruent, language. We report two studies that, instead, explored the transferability of L1 orthographic processing skills in WM in logographic-L1 and alphabetic-L1 speakers. English-French bilingual and English monolingual (alphabetic-L1) speakers, and Chinese-English (logographic-L1) speakers, learned a set of artificial logographs and associated meanings (Study 1). The logographs were used in WM tasks with and without concurrent articulatory or visuo-spatial suppression. The logographic-L1 bilinguals were markedly less affected by articulatory suppression than alphabetic-L1 monolinguals (who did not differ from their bilingual peers). Bilinguals overall were less affected by spatial interference, reflecting superior phonological processing skills or, conceivably, greater executive control. A comparison of span sizes for meaningful and meaningless logographs (Study 2) replicated these findings. However, the logographic-L1 bilinguals’ spans in L1 were measurably greater than those of their alphabetic-L1 (bilingual and monolingual) peers; a finding unaccounted for by faster articulation rates or differences in general intelligence. The overall pattern of results suggests an advantage (possibly perceptual) for logographic-L1 speakers, over and above the bilingual advantage also seen elsewhere in third language (L3) acquisition.
Resumo:
The common brown leafhopper Orosius orientalis (Hemiptera: Cicadellidae) is a polyphagous vector of a range of economically important pathogens, including phytoplasmas and viruses, which infect a diverse range of crops. Studies on the plant penetration behaviour by O. orientalis were conducted using the electrical penetration graph (EPG) technique to assist in the characterisation of pathogen acquisition and transmission. EPG waveforms representing different probing activities were acquired from adult O. orientalis probing in planta, using two host species, tobacco Nicotiana tabacum and bean Phaseolus vulgaris, and in vitro using a simple sucrose-based artificial diet. Five waveforms (O1–O5) were evident when O. orientalis fed on bean, whereas only four waveforms (O1–O4) and three waveforms (O1–O3) were observed when the leafhopper fed on tobacco and on the artificial diet, respectively. Both the mean duration of each waveform and waveform type differed markedly depending on the food substrate. Waveform O4 was not observed on the artificial diet and occurred relatively rarely on tobacco plants when compared with bean plants. Waveform O5 was only observed with leafhoppers probing on beans. The attributes of the waveforms and comparative analyses with previously published Hemipteran data are presented and discussed, but further characterisation studies will be needed to confirm our suggestions.
Resumo:
Process mining encompasses the research area which is concerned with knowledge discovery from event logs. One common process mining task focuses on conformance checking, comparing discovered or designed process models with actual real-life behavior as captured in event logs in order to assess the “goodness” of the process model. This paper introduces a novel conformance checking method to measure how well a process model performs in terms of precision and generalization with respect to the actual executions of a process as recorded in an event log. Our approach differs from related work in the sense that we apply the concept of so-called weighted artificial negative events towards conformance checking, leading to more robust results, especially when dealing with less complete event logs that only contain a subset of all possible process execution behavior. In addition, our technique offers a novel way to estimate a process model’s ability to generalize. Existing literature has focused mainly on the fitness (recall) and precision (appropriateness) of process models, whereas generalization has been much more difficult to estimate. The described algorithms are implemented in a number of ProM plugins, and a Petri net conformance checking tool was developed to inspect process model conformance in a visual manner.
Resumo:
Over the past few decades, biodiesel produced from oilseed crops and animal fat is receiving much attention as a renewable and sustainable alternative for automobile engine fuels, and particularly petroleum diesel. However, current biodiesel production is heavily dependent on edible oil feedstocks which are unlikely to be sustainable in the longer term due to the rising food prices and the concerns about automobile engine durability. Therefore, there is an urgent need for researchers to identify and develop sustainable biodiesel feedstocks which overcome the disadvantages of current ones. On the other hand, artificial neural network (ANN) modeling has been successfully used in recent years to gain new knowledge in various disciplines. The main goal of this article is to review recent literatures and assess the state of the art on the use of ANN as a modeling tool for future generation biodiesel feedstocks. Biodiesel feedstocks, production processes, chemical compositions, standards, physio-chemical properties and in-use performance are discussed. Limitations of current biodiesel feedstocks over future generation biodiesel feedstock have been identified. The application of ANN in modeling key biodiesel quality parameters and combustion performance in automobile engines is also discussed. This review has determined that ANN modeling has a high potential to contribute to the development of renewable energy systems by accelerating biodiesel research.
Resumo:
This study investigates the impact of polystyrene sodium sulfonate (PolyNaSS) grafting onto the osseo-integration of a polyethylene terephthalate artificial ligament (Ligament Advanced Reinforcement System, LARS™) used for Anterior Cruciate Ligament (ACL). The performance of grafted and non-grafted ligaments was assessed in vitro by culturing human osteoblasts under osteogenic induction and this demonstrated that the surface modification was capable of up-regulating the secretion of ALP and induced higher level of mineralisation as measured 6 weeks post-seeding by Micro-Computed Tomography. Grafted and non-grafted LARS™ were subsequently implanted in an ovine model for ACL reconstruction and the ligament-to-bone interface was evaluated by histology and biomechanical testings 3 and 12 months post-implantation. The grafted ligaments exhibited more frequent direct ligament-to-bone contact and bone formation in the core of the ligament at the later time point than the non-grafted specimens, the grafting also significantly reduced the fibrous encapsulation of the ligament 12 months post-implantation. However, this improved osseo-integration was not translated into a significant increase in the biomechanical pull-out loads. These results provide evidences that PolyNaSS grafting improved the osseo-integration of the artificial ligament within the bone tunnels. This might positively influence the outcome of the surgical reconstructions, as higher ligament stability is believed to limit micro-movement and therefore permits earlier and enhanced healing.
Resumo:
Successful anatomic fitting of a total artificial heart (TAH) is vital to achieve optimal pump hemodynamics after device implantation. Although many anatomic fitting studies have been completed in humans prior to clinical trials, few reports exist that detail the experience in animals for in vivo device evaluation. Optimal hemodynamics are crucial throughout the in vivo phase to direct design iterations and ultimately validate device performance prior to pivotal human trials. In vivo evaluation in a sheep model allows a realistically sized representation of a smaller patient, for which smaller third-generation TAHs have the potential to treat. Our study aimed to assess the anatomic fit of a single device rotary TAH in sheep prior to animal trials and to use the data to develop a threedimensional, computer-aided design (CAD)-operated anatomic fitting tool for future TAH development. Following excision of the native ventricles above the atrio-ventricular groove, a prototype TAH was inserted within the chest cavity of six sheep (28–40 kg).Adjustable rods representing inlet and outlet conduits were oriented toward the center of each atrial chamber and the great vessels, with conduit lengths and angles recorded for future analysis. A threedimensional, CAD-operated anatomic fitting tool was then developed, based on the results of this study, and used to determine the inflow and outflow conduit orientation of the TAH. The mean diameters of the sheep left atrium, right atrium, aorta, and pulmonary artery were 39, 33, 12, and 11 mm, respectively. The center-to-center distance and outer-edge-to-outer-edge distance between the atria, found to be 39 ± 9 mm and 72 ± 17 mm in this study, were identified as the most critical geometries for successful TAH connection. This geometric constraint restricts the maximum separation allowable between left and right inlet ports of a TAH to ensure successful alignment within the available atrial circumference.
Resumo:
The microstructure of an artificial grain boundary in an YBa2Cu3O7-δ (YBCO) thin film grown on a (100)(110), [001]-tilt yttria-stabilized-zirconia (YSZ) bicrystal substrate has been studied using transmission electron microscopy (TEM). The orientation relationship between the YBCO film and the YSZ substrate was [001]YBCO∥[001]YSZ and [110]YBCO∥[100]YSZ for each half of the bicrystal film. However, the exact boundary geometry of the bicrystal substrate was not transferred to the film. The substrate boundary was straight while the film boundary was wavy. In several cases there was bending of the lattice confined within a distance of a few basal-plane lattice spacings from the boundary plane and microfaceting. No intergranular secondary phase was observed but about 25% of the boundary was covered by c-axis-tilted YBCO grains and a-axis-oriented grains, both of which were typically adjacent to CuO grains or surrounded by a thin Cu-rich amorphous layer.
Resumo:
The microstructure of artificial grain boundaries in YBa2Cu3O7-δ (YBCO) thin films grown on [001] tilt YZrO2 (YSZ) bicrystal substrates has been characterized using transmission electron microscopy and atomic force microscopy. Despite a relatively straight morphology of the substrate boundaries, the film boundaries were wavy. The waviness was a result of the combined effects of grooving at the substrate boundaries prior to the film deposition and an island-growth mechanism for YBCO on YSZ substrates. The dihedral angle of the groove walls varied with the misorientation angle and depended on the symmetry of the substrate boundary. The amplitudes of the film boundary waviness compared well with the widths of the grooves. In addition, the grooves induced local bending of the YBCO lattice planes and additional tilt components perpendicular to the c-axis close to the film boundaries. © 1995.
Resumo:
Weak links were fabricated by pulsed laser deposition of YBa 2Cu3Ox thin films on Y-ZrO2 bicrystal substrates. They were formed by transferring the bicrystal boundary into the epitaxial film during the film growth. Their properties were determined by the misorientation angle ( theta ) between the two halves of the bicrystal. The transport properties of the weak links were studied as a function of theta and an exponential dependence of the weak link critical current density was observed for angles up to 45 degrees . Clear Josephson effects with good microwave and magnetic field response were observed.
Resumo:
We have studied weak links and dc-SQUIDs made from pulsed laser deposited YBa2Cu3O7-δ thin films on Y-ZrO 2 bicrystal substrates. The transport properties of the weak links were studied as a function of the misorientation angle (θ) between the two halves of the bicrystal and an exponential dependence of the weak link critical current density was observed for angles up to 40°at 77 K. Josephson effects with clear microwave and magnetic field responses were observed. An optimum dc-SQUID performance at 77 K was obtained for θ=32°. At this temperature, we achieved a periodic magnetic field response with a modulation depth of 12 μV.
Resumo:
Engineered grain boundary Josephson junctions in YBaCuO were formed on bicrystal Y-ZrO2 substrates. Laser deposited films were patterned into micron size microbridges. The authors obsd. a pronounced correlation between superconducting transport properties of grain boundary junctions and the misorientation angle θ between the two halves of the bicrystal. The crit. Josephson current Ic decreased about four orders of magnitude as θ was increased from 0 to 45 degrees. Clear microwave and magnetic field responses were obsd. at 77 K. At this temp., crit. current times normal resistance products, IcRn, of up to 1 mV were measured for low angle grain boundaries, and Shapiro steps were obsd. up to that voltage. DC SQUIDs were fabricated, and best performance at 77 K was obtained for θ = 32° with a 4-μm strip width. To utilize the higher IcRn value of a lower θ, submicron junctions have to be developed. [on SciFinder(R)]
Resumo:
Total Artificial Hearts are mechanical pumps which can be used to replace the failing natural heart. This novel study developed a means of controlling a new design of pump to reproduce physiological flow bringing closer the realisation of a practical artificial heart. Using a mathematical model of the device, an optimisation algorithm was used to determine the best configuration for the magnetic levitation system of the pump. The prototype device was constructed and tested in a mock circulation loop. A physiological controller was designed to replicate the Frank-Starling like balancing behaviour of the natural heart. The device and controller provided sufficient support for a human patient while also demonstrating good response to various physiological conditions and events. This novel work brings the design of a practical artificial heart closer to realisation.