929 resultados para Insect vectors


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plant viruses are known to modify the behaviour of their insect vectors, both directly and indirectly,generally adapting to each type of virus?vector relationship in a way that enhances transmissionefficiency. Here, we report results of three different studies showing how a virus transmitted in a non-persistent (NP) manner (Cucumber mosaic virus; CMV, Cucumovirus) can induce changes in its host plant,cucumber (Cucumis sativus cv. Marumba) that modifies the behaviour of its aphid vector (Aphis gossypiiGlover; Hemiptera: Aphididae) in a way that enhances virus transmission and spread non-viruliferousaphids changed their alighting, settling and probing behaviour activities over time when exposed toCMV-infected and mock-inoculated cucumber plants. Aphids exhibited no preference to migrate fromCMV-infected to mock-inoculated plants at short time intervals (1, 10 and 30 min after release), butshowed a clear shift in preference to migrate from CMV-infected to mock-inoculated plants 60 min afterrelease. Our free-choice preference assays showed that A. gossypii alates preferred CMV-infected overmock-inoculated plants at an early stage (30 min), but this behaviour was reverted at a later stage andaphids preferred to settle and reproduce on mock-inoculated plants. The electrical penetration graph(EPG) technique revealed a sharp change in aphid probing behaviour over time when exposed to CMV-infected plants. At the beginning (first 15 min) aphid vectors dramatically increased the number of shortsuperficial probes and intracellular punctures when exposed to CMV-infected plants. At a later stage (sec-ond hour of recording) aphids diminished their feeding on CMV-infected plants as indicated by much lesstime spent in phloem salivation and ingestion (E1 and E2). This particular probing behaviour includingan early increase in the number of short superficial probes and intracellular punctures followed by aphloem feeding deterrence is known to enhance the transmission efficiency of viruses transmitted in aNP manner. We conclude that CMV induces specific changes in a plant host that modify the alighting,settling and probing behaviour of its main vector A. gossypii, leading to optimum transmission and spreadof the virus. Our findings should be considered when modelling the spread of viruses transmitted in a NPmanner.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phytoplasmas are bacteria with a persistent propagative transmission by insect vectors that generates direct and indirect interactions among them. In order to understand these interactions for maize bushy stunt phytoplasma (MBSP) and the leafhopper vector Dalbulus maidis (Hemiptera: Cicadellidae), two research lines were addressed. The first one aimed to determine the indirect effects of maize infection by MBSP on some biological and behavioral parameters of the vector, whereas a second line investigated direct interactions of the phytoplasma with D. maidis during its movement through the vector body following acquisition from plants, and associated microbiota. Indirect effects were investigated in choice experiments in which alighting and oviposition preferences by D. maidis were compared on healthy vs. MBSP-infected plants with variable incubation time (diseased plants with early and advanced symptoms, or still asymptomatic). Likewise, indirect effect of MBSP on the D. maidis biology was determined in two life table experiments in which the vector was reared on healthy vs. MBSP-infected plants expressing advanced disease symptoms or still asymptomatic. Choice experiments showed that alighting and oviposition preferences of D. maidis on MBSP-infected plants compared to healthy plants depend on the pathogen incubation period in the plant. The leafhopper preferred MBSP-infected plants over healthy ones during the asymptomatic phase of the disease, but rejected infected plants with advanced symptoms. The vector was able to acquire MBSP from asymptomatic infected plants shortly (3 days) after inoculation, but transmission efficiency increased when acquisition occurred at later stages of the pathogen incubation period (≥14 days) in the source plants and the test plants showed disease symptoms faster. These results suggest that MBSP modulates D. maidis preference for asymptomatic infected plants in the early stages of the crop, allowing rapid spread of this pathogen. Maize infection by the phytoplasma had a neutral effect on most life table parameters of D. maidis; a lower net reproductivity rate (Ro) was observed in the cohort reared on MBSP-infected plants with advanced symptoms, which was compensated to some extent by a higher sexual ratio. MBSP acquisition by all vector nymphal stadia was confirmed by PCR, and the pathogen as detected in both male and female reproductive organs. Concerning direct MBSP-vector interactions, transmission electron microscopy analyses showed phytoplasma-like cells in the midgut lumen, microvilli and epithelial cells, suggesting that MBSP enters the epithelium midgut through the microvilli wall. Within the epithelial cells, mitochondria and bacteria-like cells (possibly endosymbionts) were observed together with masses of phythoplasma-like cells. In the hemocoel, phytoplasma-like cells grouped into a matrix were also observed in association with bacteria-like cells similar to those observed in the midgut epithelium. Similar associations were found in the salivary gland. Interestingly, in-situ hybridization (FISH) technique revealed a variation in diversity and abundance of the microbiota in intestine and salivary glands of D. maidis adults over time after MBSP acquisition from plants. Sulcia sp., Cardinium sp. and eubacteria increased their abundance over time, whereas Rickettsia sp. decreased. The frequent association of the vector microbiota with the phytoplasma in some tissues of D. maidis suggests that endosymbiotic bacteria may play some role in MBSP-vector interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epidemics of marine pathogens can spread at extremely rapid rates. For example, herpes virus spread through pilchard populations in Australia at a rate in excess of 10 000 km year(-1), and morbillivirus infections in seals and dolphins have spread at more than 3000 km year(-1). In terrestrial environments, only the epidemics of myxomatosis and calicivirus in Australian rabbits and West Nile Virus in birds in North America have rates of spread in excess of 1000 km year(-1). The rapid rates of spread of these epidemics has been attributed to flying insect vectors, but flying vectors have not been proposed for any marine pathogen. The most likely explanation for the relatively rapid spread of marine pathogens is the lack of barriers to dispersal in some parts of the ocean, and the potential for long-term survival of pathogens outside the host. These findings caution that pathogens may pose a particularly severe problem in the ocean. There is a need to develop epidemic models capable of generating these high rates of spread and obtain more estimates of disease spread rate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of Bacillus thuringiensis (Bt) endotoxins to control insect vectors of human diseases and agricultural pests is threatened by the possible evolution of resistance in major pest species. In addition to high levels of resistance produced by receptor insensitivity (5, 16, 17), several cases of tolerance to low to medium levels of toxin have been reported in laboratory colonies of lepidopteran species (3, 18). Because the molecular basis of some of these cases of tolerance to the toxin are not known, we explored alternative mechanisms. Here, we present evidence that tolerance to a Bt formulation in a laboratory colony of the flour moth Ephestia kuehniella can be induced by preexposure to a low concentration of the Bt formulation and that the tolerance correlates with an elevated immune response. The data also indicate that both immune induction and Bt tolerance can be transmitted to offspring by a maternal effect and that their magnitudes are determined by more than one gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Factors that determine the epidemiology of Tobacco yellow dwarf virus (TbYDV), including alternative host plants and insect vector(s), were assessed over three consecutive growing seasons at four field sites in Northeastern Victoria in commercial tobacco growing properties. In addition, these factors were assessed for one growing season at three bean growing properties. Overall, 23 leafhopper species were identified at the 7 sites, with Orosius orientalis as the predominant leafhopper. Of the leafhoppers collected, only O. orientalis and Anzygina zealandica tested positive for TbYDV by polymerase chain reaction (PCR). The population dynamics of O. orientalis was assessed using sweep net sampling over three growing seasons and a trimodal distribution was observed. Despite large numbers of O. orientalis occurring early in the growing season (September–October), TbYDV was only detected in these leafhoppers between late November and end of January. The peaks in the detection of TbYDV in O. orientalis correlated with the observation of disease symptoms in tobacco and bean and were associated with warmer temperatures and lower rainfall. Spatial and temporal distribution of vegetation at selected sites was determined using quadrat sampling. Of the 40 plant species identified, TbYDV was detected only in four dicotyledonous species, Amaranthus retroflexus, Phaseolus vulgaris, Nicotiana tabacum and Raphanus raphanistrum. The proportion of host and non-host availability for leafhoppers was associated with climatic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expression of proteins using recombinant baculoviruses is a mature and widely used technology. However, some aspects of the technology continue to detract from high throughput use and the basis of the final observed expression level is poorly understood. Here, we describe the design and use of a set of vectors developed around a unified cloning strategy that allow parallel expression of target proteins in the baculovirus system as N-terminal or C-terminal fusions. Using several protein kinases as tests we found that amino-terminal fusion to maltose binding protein rescued expression of the poorly expressed human kinase Cot but had only a marginal effect on expression of a well-expressed kinase IKK-2. In addition, MBP fusion proteins were found to be secreted from the expressing cell. Use of a carboxyl-terminal GFP tagging vector showed that fluorescence measurement paralleled expression level and was a convenient readout in the context of insect cell expression, an observation that was further supported with additional non-kinase targets. The expression of the target proteins using the same vectors in vitro showed that differences in expression level were wholly dependent on the environment of the expressing cell and an investigation of the time course of expression showed it could affect substantially the observed expression level for poorly but not well-expressed proteins. Our vector suite approach shows that rapid expression survey can be achieved within the baculovirus system and in addition, goes some way to identifying the underlying basis of the expression level obtained. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expression of human immunodeficiency virus type 1 (HIV-1) Gag protein in insect cells using baculovirus vectors leads to the abundant production of virus-like particles (VLPs) that represent the immature form of the virus. When Gag-Pol is included, however, VLP production is abolished, a result attributed to premature protease activation degrading the intracellular pool of Gag precursor before particle assembly can occur. As large-scale synthesis of mature noninfectious VLPs would be useful, we have sought to control HIV protease activity in insect cells to give a balance of Gag and Gag-Pol that is compatible with mature particle formation. We show here that intermediate levels of protease activity in insect cells can be attained through site-directed mutagenesis of the protease and through antiprotease drug treatment. However, despite Gag cleavage patterns that mimicked those seen in mammalian cells, VLP synthesis exhibited an essentially all-or-none response in which VLP synthesis occurred but was immature or failed completely. Our data are consistent with a requirement for specific cellular factors in addition to the correct ratio of Gag and Gag-Pol for assembly of mature retrovirus particles in heterologous cell types. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Baiting studies performed in large, medium and small hospitals in Brazil revealed the presence of 14 ant species, with up to nine recorded in one hospital. Dominant species were exotic ants, and in the large hospital, Tapinoma melanocephalum was the most prevalent. Ants were not uniformly spread through the hospitals, but tended to be found in the more critical areas, particularly in nursery, intensive care, obstetrics, neurology and dermatology units. Bacteriological studies using specific media for bacteria associated with intra-hospital infections indicated the potential for the mechanical vectoring of species of Staphylococcus, Serratia, Klebsiella, Acinetobacter, Enterobacter, Candida and Enterococcus by ants. Although T. melanocephalum did not have the highest rate of association with these bacteria, its ubiquitous occurrences resulted in the highest overall potential as a vector of these bacteria. Because of a large number of ant species occurring in Brazilian hospitals, ants pose a potential problem to the spread of diseases in hospitals. Because of the number of associated ant species in hospitals, the control of this potential problem is much more difficult than in registered temperate areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Difubenzuron (DFB), an insecticide and acaricide insect growth regulator, can be used in agriculture against insect predators and in public health programs, to control insects and vectors, mainly Aedes aegypti larvae. Due to the lack of toxicological assessments of this compound, the objective of the present study was to evaluate the toxicological effects of subacute exposure to the DFB insecticide in adult male rats. Adult male rats were exposed (gavage) to 0, 2, 4, or 8 mg/kg of DFB for 28 days. No clinical signs of toxicity were observed in the DFB-treated animals of the experimental groups. However, there was an increase in serum levels of alanine aminotransferase in the group that received 8 mg/Kg/DFB/day and urea at doses of 4 and 8 mg/Kg/DFB/day, without altering other biochemical or hematological parameters. The subacute exposure to the lowest dose of DFB caused significant decrease in testis weight, daily sperm production, and in number of sperm in the epididymis in relation to the control group. However, no alterations were observed in the sperm morphology, testicular, epididymis, liver and kindney histology, or testosterone levels. These findings unveiled the hazardous effects of DFB on male reproduction after the subacute exposure and special attention should be addressed to the effects of low doses of this pesticide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Anopheles (Kerteszia) cruzii is a primary vector of Plasmodium parasites in Brazil's Atlantic Forest. Adult females of An. cruzii and An. homunculus, which is a secondary malaria vector, are morphologically similar and difficult to distinguish when using external morphological characteristics only. These two species may occur syntopically with An. bellator, which is also a potential vector of Plasmodium species and is morphologically similar to An. cruzii and An. homunculus. Identification of these species based on female specimens is often jeopardised by polymorphisms, overlapping morphological characteristics and damage caused to specimens during collection. Wing geometric morphometrics has been used to distinguish several insect species; however, this economical and powerful tool has not been applied to Kerteszia species. Our objective was to assess wing geometry to distinguish An. cruzii, An. homunculus and An. bellator. Methods: Specimens were collected in an area in the Serra do Mar hotspot biodiversity corridor of the Atlantic Forest biome (Cananeia municipality, State of Sao Paulo, Brazil). The right wings of females of An. cruzii (n= 40), An. homunculus (n= 50) and An. bellator (n= 27) were photographed. For each individual, 18 wing landmarks were subjected to standard geometric morphometrics. Discriminant analysis of Procrustean coordinates was performed to quantify wing shape variation. Results: Individuals clustered into three distinct groups according to species with a slight overlap between representatives of An. cruzii and An. homunculus. The Mahalanobis distance between An. cruzii and An. homunculus was consistently lower (3.50) than that between An. cruzii and An. bellator (4.58) or An. homunculus and An. bellator (4.32). Pairwise cross-validated reclassification showed that geometric morphometrics is an effective analytical method to distinguish between An. bellator, An. cruzii and An. homunculus with a reliability rate varying between 78-88%. Shape analysis revealed that the wings of An. homunculus are narrower than those of An. cruzii and that An. bellator is different from both of the congeneric species. Conclusion: It is possible to distinguish among the vectors An. cruzii, An. homunculus and An. bellator based on female wing characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salivary gland proteins of Culicoides spp. have been suggested to be among the main allergens inducing IgE-mediated insect bite hypersensitivity (IBH), an allergic dermatitis of the horse. The aim of our study was to identify, produce and characterize IgE-binding salivary gland proteins of Culicoides nubeculosus relevant for IBH by phage surface display technology. A cDNA library constructed with mRNA derived from C. nubeculosus salivary glands was displayed on the surface of filamentous phage M13 and enriched for clones binding serum IgE of IBH-affected horses. Ten cDNA inserts encoding putative salivary gland allergens were isolated and termed Cul n 2 to Cul n 11. However, nine cDNA sequences coded for truncated proteins as determined by database searches. The cDNA sequences were amplified by PCR, subcloned into high level expression vectors and expressed as hexahistidine-tagged fusion proteins in Escherichia coli. Preliminary ELISA results obtained with these fusions confirmed the specific binding to serum IgE of affected horses. Therefore, the putative complete open reading frames derived from BLAST analyses were isolated by RACE-PCR and subcloned into expression vectors. The full length proteins expressed in Escherichia coli showed molecular masses in the range of 15.5-68.7 kDa in SDS-PAGE in good agreement with the masses calculated from the predicted protein sequences. Western blot analyses of all recombinant allergens with a serum pool of IBH-affected horses showed their ability to specifically bind serum IgE of sensitized horses, and ELISA determinations yielded individual horse recognition patterns with a frequency of sensitization ranging from 13 to 57%, depending on the allergen tested. The in vivo relevance of eight of the recombinant allergens was demonstrated in intradermal skin testing. For the two characterized allergens Cul n 6 and Cul n 11, sensitized horses were not available for intradermal tests. Control horses without clinical signs of IBH did not develop any relevant immediate hypersensitivity reactions to the recombinant allergens. The major contribution of this study was to provide a repertoire of recombinant salivary gland allergens repertoire from C. nubeculosus potentially involved in the pathogenesis of IBH as a starting basis for the development of a component-resolved serologic diagnosis of IBH and, perhaps, for the development of single horse tailored specific immunotherapy depending on their component-resolved sensitization patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insect bite hypersensitivity (IBH) is an IgE-mediated seasonal dermatitis of the horses associated with bites of Simulium (black fly) and Culicoides (midge) species. Although cross-reactivity between Simulium and Culicoides salivary gland extracts has been demonstrated, the molecular nature of the allergens responsible for the observed cross-reactivity remains to be elucidated. In this report we demonstrate for the first time in veterinary medicine that a homologous allergen, present in the salivary glands of both insects, shows extended IgE cross-reactivity in vitro and in vivo. The cDNA sequences coding for both antigen 5 like allergens termed Sim v 1 and Cul n 1 were amplified by PCR, subcloned in high level expression vectors, and produced as [His](6)-tagged proteins in Escherichia coli. The highly pure recombinant proteins were used to investigate the prevalence of sensitization in IBH-affected horses by ELISA and their cross-reactive nature by Western blot analyses, inhibition ELISA and intradermal skin tests (IDT). The prevalence of sensitization to Sim v 1 and Cul n 1 among 48 IBH-affected horses was 37% and 35%, respectively. In contrast, serum IgE levels to both allergens in 24 unaffected horses did not show any value above background. Both proteins strongly bound serum IgE from IBH-affected horses in Western blot analyses, demonstrating the allergenic nature of the recombinant proteins. Extended inhibition ELISA experiments clearly showed that Sim v 1 in fluid phase is able to strongly inhibit binding of serum IgE to solid phase coated Cul n 1 in a concentration dependent manner and vice versa. This crucial experiment shows that the allergens share common IgE-binding epitopes. IDT with Sim v 1 and Cul n 1 showed clear immediate and late phase reactions to the allergen challenges IBH-affected horses, whereas unaffected control horses do not develop relevant immediate hypersensitivity reactions. In some horses, however, mild late phase reactions were observed 4h post-challenge, a phenomenon reported to occur also in challenge experiments with Simulium and Culicoides crude extracts probably related to lipopolysaccaride contaminations which are also present in E. coli-expressed recombinant proteins. In conclusion our data demonstrate that IgE-mediated cross-reactivity to homologous allergens, a well-known clinically relevant phenomenon in human allergy, also occurs in veterinary allergy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flock house virus (FHV), a single-stranded RNA insect virus, has previously been reported to cross the kingdom barrier and replicate in barley protoplasts and in inoculated leaves of several plant species [Selling, B. H., Allison, R. F. & Kaesberg, P. (1990) Proc. Natl. Acad. Sci. USA 87, 434–438]. There was no systemic movement of FHV in plants. We tested the ability of movement proteins (MPs) of plant viruses to provide movement functions and cause systemic spread of FHV in plants. We compared the growth of FHV in leaves of nontransgenic and transgenic plants expressing the MP of tobacco mosaic virus or red clover necrotic mosaic virus (RCNMV). Both MPs mobilized cell-to-cell and systemic movement of FHV in Nicotiana benthamiana plants. The yield of FHV was more than 100-fold higher in the inoculated leaves of transgenic plants than in the inoculated leaves of nontransgenic plants. In addition, FHV accumulated in the noninoculated upper leaves of both MP-transgenic plants. RCNMV MP was more efficient in mobilizing FHV to noninoculated upper leaves. We also report here that FHV replicates in inoculated leaves of six additional plant species: alfalfa, Arabidopsis, Brassica, cucumber, maize, and rice. Our results demonstrate that plant viral MPs cause cell-to-cell and long-distance movement of an animal virus in plants and offer approaches to the study of the evolution of viruses and mechanisms governing mRNA trafficking in plants as well as to the development of promising vectors for transient expression of foreign genes in plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alphaviruses are positive-strand RNA viruses that can mediate efficient cytoplasmic gene expression in insect and vertebrate cells. Through recombinant DNA technology, the alphavirus RNA replication machinery has been engineered for high-level expression of heterologous RNAs and proteins. Amplification of replication-competent alpha-virus RNAs (replicons) can be initiated by RNA or DNA transfection and a variety of packaging systems have been developed for producing high titers of infectious viral particles. Although normally cytocidal for vertebrate cells, variants with adaptive mutations allowing noncytopathic replication have been isolated from persistently infected cultures or selected using a dominant selectable marker. Such mutations have been mapped and used to create new alphavirus vectors for noncytopathic gene expression in mammalian cells. These vectors allow long-term expression at moderate levels and complement previous vectors designed for short-term high-level expression. Besides their use for a growing number of basic research applications, recombinant alphavirus RNA replicons may also facilitate genetic vaccination and transient gene therapy.