932 resultados para Insanity defense.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the musicological aspects of the songs performed by Ophelia in Shakespeare's Hamlet. It proposes a reconsideration of the concept of madness and insanity by an attentive, attuned and learned listening to the songs sung by Ophelia and the ways in which they are performed and received.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The skin of fish is the first line of defense against pathogens and parasites. The skin transcriptome of the Atlantic salmon is poorly characterized, and currently only 2,089 expressed sequence tags (ESTs) out of a total of half a million sequences are generated from skin-derived cDNA libraries. The primary aim of this study was to enhance the transcriptomic knowledge of salmon skin by using next-generation sequencing (NGS) technology, namely the Roche-454 platform. An equimolar mixture of high-quality RNA from skin and epidermal samples of salmon reared in either freshwater or seawater was used for 454-sequencing. This technique yielded over 600,000 reads, which were assembled into 34,696 isotigs using Newbler. Of these isotigs, 12 % had not been sequenced in Atlantic salmon, hence representing previously unreported salmon mRNAs that can potentially be skin-specific. Many full-length genes have been acquired, representing numerous biological processes. Mucin proteins are the main structural component of mucus and we examined in greater detail the sequences we obtained for these genes. Several isotigs exhibited homology to mammalian mucins (MUC2, MUC5AC and MUC5B). Mucin mRNAs are generally > 10 kbp and contain large repetitive units, which pose a challenge towards full-length sequence discovery. To date, we have not unearthed any full-length salmon mucin genes with this dataset, but have both N- and C-terminal regions of a mucin type 5. This highlights the fact that, while NGS is indeed a formidable tool for sequence data mining of non-model species, it must be complemented with additional experimental and bioinformatic work to characterize some mRNA sequences with complex features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arabidopsis thaliana CORONATINE INSENSITIVE1 (COI1) gene encodes an F-box protein to assemble SCF(COI1) complexes essential for response to jasmonates (JAs), which are a family of plant signaling molecules required for many essential functions, including plant defense and reproduction. To better understand the molecular basis of JA action, we screened for suppressors of coi1 and isolated a coi1 suppressor1 (cos1) mutant. The cos1 mutation restores the coi1-related phenotypes, including defects in JA sensitivity, senescence, and plant defense responses. The COS1 gene was cloned through a map-based approach and found to encode lumazine synthase, a key component in the riboflavin pathway that is essential for diverse yet critical cellular processes. We demonstrated a novel function for the riboflavin pathway that acts downstream of COI1 in the JA signaling pathway and is required for suppression of the COI1-mediated root growth, senescence, and plant defense.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toll-like receptors (TLRs) are crucial in the innate immune response to pathogens, in that they recognize and respond to pathogen associated molecular patterns, which leads to activation of intracellular signaling pathways and altered gene expression. Vaccinia virus (VV), the poxvirus used to vaccinate against smallpox, encodes proteins that antagonize important components of host antiviral defense. Here we show that the VV protein A52R blocks the activation of the transcription factor nuclear factor kappa B (NF-kappa B) by multiple TLRs, including TLR3, a recently identified receptor for viral RNA. A52R associates with both interleukin 1 receptor-associated kinase 2 (IRAK2) and tumor necrosis factor receptor-associated factor 6 (TRAF6), two key proteins important in TLR signal transduction. Further, A52R could disrupt signaling complexes containing these proteins. A virus deletion mutant lacking the A52R gene was attenuated compared with wild-type and revertant controls in a murine intranasal model of infection. This study reveals a novel mechanism used by VV to suppress the host immunity. We demonstrate viral disabling of TLRs, providing further evidence for an important role for this family of receptors in the antiviral response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidermal keratinocytes produce and secrete antimicrobial peptides (AMPs) that subsequently form a chemical shield on the skin surface. Cathelicidins are one family of AMPs in skin with various further immune functions. Consequently, dysfunction of these peptides has been implicated in the pathogenesis of inflammatory skin disease. In particular, the cathelicidin LL-37 is overexpressed in inflamed skin in psoriasis, binds to extracellular self-DNA released from dying cells and converts self-DNA in a potent stimulus for plasmacytoid dendritic cells (pDCs). Subsequently, pDCs secrete type I interferons and trigger an auto-inflammatory cascade. Paradoxically, therapies targeting the vitamin D pathway such as vitamin D analogues or UVB phototherapy ameliorate cutaneous inflammation in psoriasis but strongly induce cathelicidin expression in skin at the same time. Current evidence now suggests that self-DNA present in the cytosol of keratinocytes is also pro-inflammatory active and triggers IL-1β secretion in psoriatic lesions through the AIM2 inflammasome. This time, however, binding of LL-37 to self-DNA neutralizes DNA-mediated inflammation. Hence, cathelicidin LL-37 shows contrasting roles in skin inflammation in psoriasis and might serve as a target for novel therapies for this chronic skin disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article assesses the effect that leveraging civilian defense force militias has on the dynamics of violence in civil war. We argue that the delegation of security and combat roles to local civilians shifts the primary targets of insurgent violence toward civilians, in an attempt to deter future defections, and re-establish control over the local population. This argument is assessed through an analysis of the Sunni Awakening and ancillary Sons of Iraq paramilitary program. The results suggest that at least in the Al-Anbar province of Iraq, the utilization of the civilian population in counterinsurgent roles had significant implications for the targets of insurgent violence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasites and pathogens are ubiquitous and act as an important selection pressure on animals. Here, drawing primarily on our own research, mostly on insects, we illustrate how host-parasite interactions have played a role in the evolution of a range of phenomena, including animal coloration, social behavior, foraging ecology, sexual selection, and life-history tradeoffs, as well as how variation in host behavior and ecology can drive variation in parasitism risk and host allocation of resources to immunity and other antiparasite defenses. We conclude by identifying key areas for future study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article examines how civilian defense militias shape violence during civil war. We define civilian defense forces as a sedentary and defensive form of pro-government militia that incumbents often use to harness the participation of civilians during a counterinsurgency campaign. We argue that civilian defense forces reduce the problem of insurgent identification. This leads to a reduction in state violence against civilians. However, we also claim that these actors undermine civilian support for insurgents, which leads to an increase in rebel violence against civilians and overall intensification of conflict. A statistical analysis of government and rebel violence against civilians from 1981 to 2005, and a qualitative assessment of a civilian defense force operating in Iraq from 2005 to 2009, offer strong support for our theoretical claims. These findings provide further insight into pro-government militias and their effects on violence. They also have wider ethical implications for the use of civilian collaborators during civil war.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesina elaborada para obtener el MPhil en la Universidad de Cambridge, Inglaterra, 1987

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants defend themselves against microbial pathogens through a range of highly sophisticated and integrated molecular systems. Recognition of pathogen-secreted effector proteins often triggers the hypersensitive response (HR), a complex multicellular defense reaction where programmed cell death (PCD) of cells surrounding the primary site of infection is a prominent feature. Even though the HR was described almost a century ago, cell to cell factors acting at the local level generating the full defense reaction has remained obscure. In this study, we sought to identify diffusible molecules produced during the HR that could induce cell death in naïve tissue. We found that 4-methylsulfinylbutyl isothiocyanate (sulforaphane) is released by Arabidopsis thaliana leaf tissue undergoing HR, and that this compound induces cell death as well as prime defense in naïve tissue. Two different mutants impaired in the pathogen-induced accumulation of sulforaphane displayed attenuated PCD upon bacterial and oomycete effector recognition as well as decreased resistance to several isolates of the plant pathogen Hyaloperonospora arabidopsidis. Treatment with sulforaphane provided protection against a virulent H. arabidopsidis isolate. Glucosinolate breakdown products are recognized as antifeeding compounds towards insects and recently also as intracellular signaling and bacteriostatic molecules in Arabidopsis. The data presented herein indicate that these compounds also trigger local defense responses in Arabidopsis tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arabidopsis is a model plant used to study disease resistance; Solanum tuberosum or potato is a crop species. Both plants possess inducible defense mechanisms that are deployed upon recognition of pathogen invasion. Transcriptional reprogramming is crucial to the activation of defense responses. The Pathogenesis-Related (PR) genes are activated in these defense programs. Expression of Arabidopsis PR-l and potato PR-10a serve as markers for the deployment of defense responses in these plants. PR-l expression indicates induction of systemic acquired resistance (SAR). Activation of SAR requires accumulation of salicylic acid (SA), in addition to the interaction of the non-expressor of pathogenesis-related genes I (NPRI), with the TGA transcription factors. The PR-10a is activated in response to pathogen invasion, wounding and elicitor treatment. PR-10a induction requires recruitment of the Whirly I (Whyl) activator to the promoter. This locus is also negatively regulated by the silencer element binding factor (SEBF). We established that both the PR-l and PR-10a are occupied by repressors under non-inducing conditions. TGA2 was found to be a constitutive resident and repressor of PR-l, which mediates repression by forming an oligomeric complex on the promoter. The DNA-binding activity of this oligomer required the TGA2 N-terminus (NT). Under resting conditions we determined that the PR-10a is bound by a repressosome containing SEBF and curiously the activator Pto interacting protein 4 (Pti4). In the context of this repressosome, SEBF is responsible for PR-10a binding, yet rWe also showed that PR-l and PR-10a are activated by different means. In PR-l activation the NPRI NT domain alleviates TGA2-mediated repression by interacting with the TGA2 NT. TGA2 remains at the PR-l but adopts a dimeric conformation and forms an enhanceosome with NPRl. In contrast, the PR-10a is activated by evicting the repressosome and recruiting Why! to the promoter. These results advance our understanding of the mechanisms regulating PR-l and PR-10a expression under resting and inducing conditions. This study also revealed that the means of regulation for related genes can differ greatly between model and crop s

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systemic Acquired Resistance (SAR) is a type of plant systemic resistance occurring against a broad spectrum of pathogens. It can be activated in response to pathogen infection in the model plant Arabidopsis thaliana and many agriculturally important crops. Upon SAR activation, the infected plant undergoes transcriptional reprogramming, marked by the induction of a battery of defense genes, including Pathogenesis-related (PR) genes. Activation of the PR-1 gene serves as a molecular marker for the deployment of SAR. The accumulation of a defense hormone, salicylic acid (SA) is crucial for the infected plant to mount SAR. Increased cellular levels of SA lead to the downstream activation of the PR-1 gene, triggered by the combined action of the Non-expressor of Pathogenesis-related Gene 1 (NPR1) protein and the TGA II-clade transcription factor (namely TGA2). Despite the importance of SA, its receptor has remained elusive for decades. In this study, we demonstrated that in Arabidopsis the NPR1 protein is a receptor for SA. SA physically binds to the C-terminal transactivation domain of NPR1. The two cysteines (Cys521 and Cys529), which are important for NPR1’s coactivator function, within this transactivation domain are critical for the binding of SA to NPR1. The interaction between SA and NPR1 requires a transition metal, copper, as a cofactor. Our results also suggested a conformational change in NPR1 upon SA binding, releasing the C-terminal transactivation domain from the N-terminal autoinhibitory BTB/POZ domain. These results advance our understanding of the plant immune function, specifically related to the molecular mechanisms underlying SAR. The discovery of NPR1 as a SA receptor enables future chemical screening for small molecules that activate plant immune responses through their interaction with NPR1 or NPR1-like proteins in commercially important plants. This will help in identifying the next generation of non-biocidal pesticides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops a model of short-range ballistic missile defense and uses it to study the performance of Israel’s Iron Dome system. The deterministic base model allows for inaccurate missiles, unsuccessful interceptions, and civil defense. Model enhancements consider the trade-offs in attacking the interception system, the difficulties faced by militants in assembling large salvos, and the effects of imperfect missile classification by the defender. A stochastic model is also developed. Analysis shows that system performance can be highly sensitive to the missile salvo size, and that systems with higher interception rates are more “fragile” when overloaded. The model is calibrated using publically available data about Iron Dome’s use during Operation Pillar of Defense in November 2012. If the systems performed as claimed, they saved Israel an estimated 1778 casualties and $80 million in property damage, and thereby made preemptive strikes on Gaza about 8 times less valuable to Israel. Gaza militants could have inflicted far more damage by grouping their rockets into large salvos, but this may have been difficult given Israel’s suppression efforts. Counter-battery fire by the militants is unlikely to be worthwhile unless they can obtain much more accurate missiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper characterizes welfarist social evaluation in a multi-profile setting where, in addition to multiple utility profiles, it is assumed that there are several profiles of non-welfare information. We prove new versions of the welfarism theorems in this alternative framework, and we illustrate that a very plausible and weak anonymity property is sufficient to generate anonymous social-evaluation orderings.