856 resultados para Inhalation exposure


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diesel exhaust and wood burning are important sources of ambient atmospheric particles due to increasing numbers of diesel cars and the importance of wood as a source of renewable energy. Inhalation is the predominant route of entry and uptake for fine and ultrafine particles into the body. Health effects of atmospheric particles are still not completely understood. There is consistent evidence from epidemiology that particle exposure contributes to respiratory and cardiovascular diseases. This study aimed at examining acute responses of airway epithelial cells and luminal macrophages after exposure to freshly emitted and photochemically aged carbonaceous aerosols under realistic atmospheric conditions. In addition to a bronchial epithelial cell line advanced cell cultures namely fully differentiated respiratory epithelia and primary surface macrophages were used. Our results demonstrate that a single exposure of the cells to realistic particle doses of 0.3–3 ng diesel or 3–9 ng wood aerosol per cm2 cell surface induces small, particle-specific responses. The release of interleukin-6 and -8 was found to be decreased in differentiated airway epithelia but not in the other cell models studied. Aerosol exposure decreased macrophage phagocytic activity by 45–90%. Cell and tissue integrity remained unaffected. Overall, primary and aged particles from the same combustion induced similar responses in the cell models tested, whereby particles from diesel exhaust affected the cells more than those from wood combustion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intensive use of nano-sized particles in many different applications necessitates studies on their risk assessment as there are still open questions on their safe handling and utilization. For reliable risk assessment, the interaction of nanoparticles (NP) with biological systems after various routes of exposure needs to be investigated using well-characterized NP. We report here on the generation of gold-NP (Au-NP) aerosols for inhalation studies with the spark ignition technique, and their characterization in terms of chemical composition, physical structure, morphology, and specific surface area, and on interaction with lung tissues and lung cells after 1 h inhalation by mice. The originally generated agglomerated Au-NP were converted into compact spherical Au-NP by thermal annealing at 600 °C, providing particles of similar mass, but different size and specific surface area. Since there are currently no translocation data available on inhaled Au-NP in the 10–50 nm diameter range, the emphasis was to generate NP as small as 20 nm for inhalation in rodents. For anticipated in vivo systemic translocation and dosimetry analyses, radiolabeled Au-NP were created by proton irradiating the gold electrodes of the spark generator, thus forming gamma ray emitting 195Au with 186 days half-life, allowing long-term biokinetic studies. The dissolution rate of 195Au from the NP was below detection limits. The highly concentrated, polydisperse Au-NP aerosol (1–2 × 107 NP/cm3) proved to be constant over several hours in terms of its count median mobility diameter, its geometric standard deviation and number concentration. After collection on filters particles can be re-suspended and used for instillation or ingestion studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Due to its antibacterial properties, silver (Ag) has been used in more consumer products than any other nanomaterial so far. Despite the promising advantages posed by using Ag-nanoparticles (NPs), their interaction with mammalian systems is currently not fully understood. An exposure route via inhalation is of primary concern for humans in an occupational setting. Aim of this study was therefore to investigate the potential adverse effects of aerosolised Ag-NPs using a human epithelial airway barrier model composed of A549, monocyte derived macrophage and dendritic cells cultured in vitro at the air-liquid interface. Cell cultures were exposed to 20 nm citrate-coated Ag-NPs with a deposition of 30 and 278 ng/cm2 respectively and incubated for 4 h and 24 h. To elucidate whether any effects of Ag-NPs are due to ionic effects, Ag-Nitrate (AgNO3) solutions were aerosolised at the same molecular mass concentrations. RESULTS: Agglomerates of Ag-NPs were detected at 24 h post exposure in vesicular structures inside cells but the cellular integrity was not impaired upon Ag-NP exposures. Minimal cytotoxicity, by measuring the release of lactate dehydrogenase, could only be detected following a higher concentrated AgNO3-solution. A release of pro-inflammatory markers TNF-alpha and IL-8 was neither observed upon Ag-NP and AgNO3 exposures as well as was not affected when cells were pre-stimulated with lipopolysaccharide (LPS). Also, an induction of mRNA expression of TNF-alpha and IL-8, could only be observed for the highest AgNO3 concentration alone or even significantly increased when pre-stimulated with LPS after 4 h. However, this effect disappeared after 24 h. Furthermore, oxidative stress markers (HMOX-1, SOD-1) were expressed after 4 h in a concentration dependent manner following AgNO3 exposures only. CONCLUSIONS: With an experimental setup reflecting physiological exposure conditions in the human lung more realistic, the present study indicates that Ag-NPs do not cause adverse effects and cells were only sensitive to high Ag-ion concentrations. Chronic exposure scenarios however, are needed to reveal further insight into the fate of Ag-NPs after deposition and cell interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Persons with cystic fibrosis (CF) are at-risk for health effects from ambient air pollution but little is known about the interaction of nanoparticles (NP) with CF lungs. Here we study the distribution of inhaled NP in a murine CF model and aim to reveal mechanisms contributing to adverse effects of inhaled particles in susceptible populations. METHODS Chloride channel defective CftrTgH (neoim) Hgu mice were used to analyze lung function, lung distribution and whole body biokinetics of inhaled NP, and inflammatory responses after intratracheal administration of NP. Distribution of 20-nm titanium dioxide NP in lungs was assessed on ultrathin sections immediately and 24 h after a one-hour NP inhalation. NP biokinetics was deduced from total and regional lung deposition and from whole body translocation of inhaled 30-nm iridium NP within 24 h after aerosol inhalation. Inflammatory responses were assessed within 7 days after carbon NP instillation. RESULTS Cftr mutant females had moderately reduced lung compliance and slightly increased airway resistance compared to wild type mice. We found no genotype dependent differences in total, regional and head deposition or in secondary-organ translocation of inhaled iridium NP. Titanium dioxide inhalation resulted in higher NP uptake by alveolar epithelial cells in Cftr mutants. Instillation of carbon NP induced a comparable acute and transient inflammatory response in both genotypes. The twofold increase of bronchoalveolar lavage (BAL) neutrophils in Cftr mutant compared to wild type mice at day 3 but not at days 1 and 7, indicated an impaired capacity in inflammation resolution in Cftr mutants. Concomitant to the delayed decline of neutrophils, BAL granulocyte-colony stimulating factor was augmented in Cftr mutant mice. Anti-inflammatory 15-hydroxyeicosatetraenoic acid was generally significantly lower in BAL of Cftr mutant than in wild type mice. CONCLUSIONS Despite lacking alterations in lung deposition and biokinetics of inhaled NP, and absence of significant differences in lung function, higher uptake of NP by alveolar epithelial cells and prolonged, acute inflammatory responses to NP exposure indicate a moderately increased susceptibility of lungs to adverse effects of inhaled NP in Cftr mutant mice and provides potential mechanisms for the increased susceptibility of CF patients to air pollution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systemic toxicity was evaluated in Sprague-Dawley (SD) rats and A-strain mice exposed to HCHO inhalation at 0, 0.5, 3, or 15 ppm for six hours/day, five days/week for up to 24 weeks. Toxicity was measured by flow cytometry to detect changes in cell cycle RNA and DNA content and by alkaline elution to detect DNA protein cross-link (DPC) formation.^ A G(,2)M block was detected in SD rat marrow following one week of exposure to 0.5, 3, or 15 ppm HCHO, but this block did not persist. No effect was noticed in mouse marrow. Only a minimal increase in RNA content was detected in rat or mouse marrow while exfoliated lung cells showed a significant increase in RNA activity after one week of exposure.^ Acute exposure in SD rats for four hours/day for one or three days at 150 ppm showed an increase in RNA activity in exfoliated lung cells but not in the marrow after one day. On the third day, dead cells were detected in exfoliated lung cells.^ In alkaline elution studies, no DPC were detected in marrow of SD rats after 24 weeks exposure up to 15 ppm. During acute exposures, a dose response relationship was detected in SD rat exfoliated lung cells which yielded cross-linking factors of 0.954, 1.237, and 1.417 following a four hour exposure to 15, 50, or 150 ppm, respectively. No DPC were detected in the marrow at 150 ppm. In vitro exposures to HCHO of CHO and SHE cells and rat marrow cells revealed the production of DPC and DNA-DNA cross-links.^ Cytoxan treatment of SD rats was used to provide positive controls for flow cytometry and alkaline elution. A drastic reduction in RNA content and cycling cells occurred one day following treatment. After four days, RNA content was greatly increased; and on day eleven the marrow had regenerated. DPCs were detected in both the marrow and the exfoliated lung cells.^ The lack of significant responses in SD rats and A-strain mice below 15 ppm HCHO is explainable by host defense mechanisms. Apparently, the mucociliary apparatus and enzymatic detoxification are sufficient to reduce systemic toxicity to low level concentrations of formaldehyde. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colombia is one of the largest per capita mercury polluters in the world as a consequence of its artisanal gold mining activities. The severity of this problem in terms of potential health effects was evaluated by means of a probabilistic risk assessment carried out in the twelve departments (or provinces) in Colombia with the largest gold production. The two exposure pathways included in the risk assessment were inhalation of elemental Hg vapors and ingestion of fish contaminated with methyl mercury. Exposure parameters for the adult population (especially rates of fish consumption) were obtained from nation-wide surveys and concentrations of Hg in air and of methyl-mercury in fish were gathered from previous scientific studies. Fish consumption varied between departments and ranged from 0 to 0.3 kg d?1. Average concentrations of total mercury in fish (70 data) ranged from 0.026 to 3.3 lg g?1. A total of 550 individual measurements of Hg in workshop air (ranging from menor queDL to 1 mg m?3) and 261 measurements of Hg in outdoor air (ranging from menor queDL to 0.652 mg m?3) were used to generate the probability distributions used as concentration terms in the calculation of risk. All but two of the distributions of Hazard Quotients (HQ) associated with ingestion of Hg-contaminated fish for the twelve regions evaluated presented median values higher than the threshold value of 1 and the 95th percentiles ranged from 4 to 90. In the case of exposure to Hg vapors, minimum values of HQ for the general population exceeded 1 in all the towns included in this study, and the HQs for miner-smelters burning the amalgam is two orders of magnitude higher, reaching values of 200 for the 95th percentile. Even acknowledging the conservative assumptions included in the risk assessment and the uncertainties associated with it, its results clearly reveal the exorbitant levels of risk endured not only by miner-smelters but also by the general population of artisanal gold mining communities in Colombia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential for health risks to humans exposed to the asbestos minerals continues to be a public health concern. Although the production and use of the commercial amphibole asbestos minerals—grunerite (amosite) and riebeckite (crocidolite)—have been almost completely eliminated from world commerce, special opportunities for potentially significant exposures remain. Commercially viable deposits of grunerite asbestos are very rare, but it can occur as a gangue mineral in a limited part of a mine otherwise thought asbestos-free. This report describes such a situation, in which a very localized seam of grunerite asbestos was identified in an iron ore mine. The geological occurrence of the seam in the ore body is described, as well as the mineralogical character of the grunerite asbestos. The most relevant epidemiological studies of workers exposed to grunerite asbestos are used to gauge the hazards associated with the inhalation of this fibrous mineral. Both analytical transmission electron microscopy and phase-contrast optical microscopy were used to quantify the fibers present in the air during mining in the area with outcroppings of grunerite asbestos. Analytical transmission electron microscopy and continuous-scan x-ray diffraction were used to determine the type of asbestos fiber present. Knowing the level of the miner’s exposures, we carried out a risk assessment by using a model developed for the Environmental Protection Agency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We observed unexpected high plasma concentrations of tobrarriycin (48.5 and 28.1 mg/L) in fingerprick blood samples after the nebulization of tobramycin solution for inhalation (tobramycin 300 mg/5 mL, TOBI(R)) by 2 young children aged 3 years. To investigate whether dermal contamination could be the source of error, 3 adult volunteers were present during another nebulization by a third child (age 2 years). The volunteers had exposure to tobramycin by handling the nebulizer or the nebule and also by inhalation from holding the child and being in close proximity while TOBI(R) was being administered. Five blood samples by fingerprick and 2 by venipuncture were collected and assayed for tobramycin concentration. On each occasion the site was swabbed with alcohol wipes to mimic standard patient sampling methods. One site was resampled after cleaning of hands with 2% chlorhexidine gluconate and water. Tobramycin concentrations from venipuncture 1-2 hours after nebulization were all < 0.2 mg/L except for 1 result of 1.2 mg/L. The tobramycin concentrations from fingerpricks before hand washing varied between 6.8 and 172 mg/L, and after hand washing between 0.3 and 17.6 mg/L. Contamination of fingers with tobramycin is likely to have caused the error in the 2 initial cases and did cause misleadingly elevated levels in the adult volunteers. We caution that therapeutic drug monitoring of nebulized tobramycin should not be done by fingerprick sampling, and care should be taken to avoid contamination of the venipuncture site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smoke inhalation injuries are the leading cause of mortality from burn injury. Airway obstruction due to mucus plugging and bronchoconstriction can cause severe ventilation inhomogeneity and worsen hypoxia. Studies describing changes of viscoelastic characteristics of the lung after smoke inhalation are missing. We present results of a new smoke inhalation device in sheep and describe pathophysiological changes after smoke exposure. Fifteen female Merino ewes were anesthetized and intubated. Baseline data using electrical impedance tomography and multiple-breath inert-gas washout were obtained by measuring ventilation distribution, functional residual capacity, lung clearance index, dynamic compliance, and stress index. Ten sheep were exposed to standardized cotton smoke insufflations and five sheep to sham smoke insufflations. Measured carboxyhemoglobin before inhalation was 3.87 +/- 0.28% and 5 min after smoke was 61.5 +/- 2.1%, range 50-69.4% ( P < 0.001). Two hours after smoke functional residual capacity decreased from 1,773 +/- 226 to 1,006 +/- 129 ml and lung clearance index increased from 10.4 +/- 0.4 to 14.2 +/- 0.9. Dynamic compliance decreased from 56.6 +/- 5.5 to 32.8 +/- 3.2 ml/ cmH(2)O. Stress index increased from 0.994 +/- 0.009 to 1.081 +/- 0.011 ( P < 0.01) ( all means +/- SE, P < 0.05). Electrical impedance tomography showed a shift of ventilation from the dependent to the independent lung after smoke exposure. No significant change was seen in the sham group. Smoke inhalation caused immediate onset in pulmonary dysfunction and significant ventilation inhomogeneity. The smoke inhalation device as presented may be useful for interventional studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The airway epithelium is the first point of contact in the lung for inhaled material, including infectious pathogens and particulate matter, and protects against toxicity from these substances by trapping and clearance via the mucociliary escalator, presence of a protective barrier with tight junctions and initiation of a local inflammatory response. The inflammatory response involves recruitment of phagocytic cells to neutralise and remove and invading materials and is oftern modelled using rodents. However, development of valid in vitro airway epithelial models is of great importance due to the restrictions on animal studies for cosmetic compound testing implicit in the 7th amendment to the European Union Cosmetics Directive. Further, rodent innate immune responses have fundamental differences to human. Pulmonary endothelial cells and leukocytes are also involved in the innate response initiated during pulmonary inflammation. Co-culture models of the airways, in particular where epithelial cells are cultured at air liquid interface with the presence of tight junctions and differentiated mucociliary cells, offer a solution to this problem. Ideally validated models will allow for detection of early biomarkers of response to exposure and investigation into inflammatory response during exposure. This thesis describes the approaches taken towards developing an in vitro epithelial/endothelial cell model of the human airways and identification biomarkers of response to exposure to xenobiotics. The model comprised normal human primary microvascular endothelial cells and the bronchial epithelial cell line BEAS-2B or normal human bronchial epithelial cells. BEAS-2B were chosen as their characterisation at air liquid interface is limited but they are robust in culture, thereby predicted to provide a more reliable test system. Proteomics analysis was undertaken on challenged cells to investigate biomarkers of exposure. BEAS-2B morphology was characterised at air liquid interface compared with normal human bronchial epithelial cells. The results indicate that BEAS-2B cells at an air liquid interface form tight junctions as shown by expression of the tight junction protein zonula occludens-1. To this author’s knowledge this is the first time this result has been reported. The inflammatory response of BEAS-2B (measured as secretion of the inflammatory mediators interleukin-8 and -6) air liquid interface mono-cultures to Escherichia coli lipopolysaccharide or particulate matter (fine and ultrafine titanium dioxide) was comparable to published data for epithelial cells. Cells were also exposed to polymers of “commercial interest” which were in the nanoparticle range (and referred to particles hereafter). BEAS-2B mono-cultures showed an increased secretion of inflammatory mediators after challenge. Inclusion of microvascular endothelial cells resulted in protection against LPS- and particle- induced epithelial toxicity, measured as cell viability and inflammatory response, indicating the importance of co-cultures for investigations into toxicity. Two-dimensional proteomic analysis of lysates from particle-challenged cells failed to identify biomarkers of toxicity due to assay interference and experimental variability. Separately, decreased plasma concentrations of serine protease inhibitors, and the negative acute phase proteins transthyretin, histidine-rich glycoprotein and alpha2-HS glycoprotein were identified as potential biomarkers of methyl methacrylate/ethyl methacrylate/butylacrylate treatment in rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major consequence of contamination at the local level’s population as it relates to environmental health and environmental engineering is childhood lead poisoning. Environmental contamination is one of the pressing environmental concerns facing the world today. Current approaches often focus on large contaminated industrial size sites that are designated by regulatory agencies for site remediation. Prior to this study, there were no known published studies conducted at the local and smaller scale, such as neighborhoods, where often much of the contamination is present to remediate. An environmental health study of local lead-poisoning data in Liberty City, Little Haiti and eastern Little Havana in Miami-Dade County, Florida accounted for a disproportionately high number of the county’s reported childhood lead poisoning cases. An engineering system was developed and designed for a comprehensive risk management methodology that is distinctively applicable to the geographical and environmental conditions of Miami-Dade County, Florida. Furthermore, a scientific approach for interpreting environmental health concerns, while involving detailed environmental engineering control measures and methods for site remediation in contained media was developed for implementation. Test samples were obtained from residents and sites in those specific communities in Miami-Dade County, Florida (Gasana and Chamorro 2002). Currently lead does not have an Oral Assessment, Inhalation Assessment, and Oral Slope Factor; variables that are required to run a quantitative risk assessment. However, various institutional controls from federal agencies’ standards and regulation for contaminated lead in media yield adequate maximum concentration limits (MCLs). For this study an MCL of .0015 (mg/L) was used. A risk management approach concerning contaminated media involving lead demonstrates that the linkage of environmental health and environmental engineering can yield a feasible solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aflatoxin B1 (AFB1) is a secondary metabolite produced by the fungi Aspergillus flavus and is the most potent hepatocarcinogen known in mammals and has been classified by the International Agency of Research on Cancer as Group 1 carcinogen. Although dietary exposure to AFB1 has been extensively documented, there are still few studies dedicated to the problem of occupational exposure. Considering recent findings regarding AFB1 occupational exposure in poultry production, it was considered relevant to clarify if there is also exposure in poultry slaughterhouses. Occupational exposure assessment to AFB1 was done with a biomarker of internal dose that measures AFB1 in the serum by enzyme-linked immunosorbent assay. Thirty workers from a slaughterhouse were enrolled in this study. A control group (n = 30) was also considered in order to know AFB1 background levels for Portuguese population. Fourteen workers (47.0%) showed detectable levels of AFB1 with values from 1.06 to 4.03ng ml(-1), with a mean value of 1.73ng ml(-1). No AFB1 was detected in serum of individuals used as controls. Despite uncertainties regarding the exposure route that is contributing more to exposure (inhalation or dermal) is possible to state that exposure to AFB1 is occurring in the slaughterhouse studied. It seems that reducing AFB1 contamination in poultry production can have a positive result in this occupational setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Health effects resulting from dust inhalation in occupational environments may be more strongly associated with specific microbial components, such as fungi, than to the particles. The aim of the present study is to characterize the occupational exposure to the fungal burden in four different occupational settings (two feed industries, one poultry and one waste sorting industry), presenting results from two air sampling methods – the impinger collector and the use of filters. In addition, the equipment used for the filter sampling method allowed a more accurate characterization regarding the dimension of the collected fungal particles (less than 2.5 μm size). Air samples of 300L were collected using the impinger Coriolis μ air sampler. Simultaneously, the aerosol monitor (DustTrak II model 8532, TSI®) allowed assessing viable microbiological material below the 2.5 μm size. After sampling, filters were immersed in 300 mL of sterilized distilled water and agitated for 30 min at 100 rpm. 150 μl from the sterilized distilled water were subsequently spread onto malt extract agar (2%) with chloramphenicol (0.05 g/L). All plates were incubated at 27.5 ºC during 5–7 days. With the impinger method, the fungal load ranged from 0 to 413 CFU.m-3 and with the filter method, ranged from 0 to 64 CFU.m-3. In one feed industry, Penicillium genus was the most frequently found genus (66.7%) using the impinger method and three more fungi species/genera/complex were found. The filter assay allowed the detection of only two species/genera/complex in the same industry. In the other feed industry, Cladosporium sp. was the most found (33.3%) with impinger method and three more species/genera/complex were also found. Through the filter assay four fungi species/genera/complex were found. In the assessed poultry, Rhyzopus sp. was the most frequently detected (61.2%) and more three species/genera/complex were isolated. Through the filter assay, only two fungal species/genera/complex were found. In the waste sorting industry Penicillium sp. was the most prevalent (73.6%) with the impinger method, being isolated two more different fungi species/genera/complex. Through the filter assay only Penicillium sp. was found. A more precise determination of occupational fungal exposure was ensured, since it was possible to obtain information regarding not only the characterization of fungal contamination (impinger method), but also the size of dust particles, and viable fungal particles, that can reach the worker ́s respiratory tract (filters method). Both methods should be used in parallel to enrich discussion regarding potential health effects of occupational exposure to fungi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mycotoxins are an important group of naturally occurring substances known to contaminate a huge variety of agricultural products, feed and food commodities. The main concern is their widespread presence and toxic effects on humans and animals as they have been described as cytotoxic, nephrotoxic, hepatotoxic, teratogenic, immunosuppressive, mutagenic and/or carcinogenic. However, until now, risk assessments and regulations have usually been performed on individual mycotoxins despite humans and animals are being frequently exposed to a multitude of mycotoxins simultaneously. Moreover, even though some exposures through inhalation and dermal contact may potentially occur, only oral ingestion has been considered as the sole route of exposure in all the evaluations. However, more recent studies have also demonstrated airborne exposure to mycotoxins in different occupational settings with emphasis on agricultural professions. In these cases, skin contact with mold-infested substrates and inhalation of spore-borne toxins are the most important sources of exposure. Still, mycotoxins are not normally recongnize as na occupational hazard and exposure is different from the one ocurring by food intake. In this case, exposure is charaterized to be acute and simultaneous to other mycotoxins and also to fungi and dust. All these features increase the challenge implicated in the risk assessment process. Some topics will be presented and discussed in detailed such as: What occupational settings should be consider in this case; possible exposure routes; exposure characterization; how to assess exposure; co-exposure; aggregate exposure and cumulative risk assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Community gardening in cities is increasing, driven by social interaction and food security. City soils are sinks for heavy metals; including neurotoxic lead (Pb). Exposure routes are primarily through inhalation/ingestion of soil, or second by ingestion of plants that have accumulated Pb. This research evaluates soil at three Liberty City, Florida sites estimating risk of Pb exposure through primary and secondary pathways. Soil cores were collected from Liberty City, and red Malabar spinach (Basella rubra) was grown in Pb soil treatments in a greenhouse. Total soil Pb levels and plant tissues were measured after acid digestion, by ICP-OES. In Liberty City, two sites had hotspots with areas of elevated soil Pb levels. Plants grown on Pb contaminated soil all accumulated statistically significant Pb concentrations. Therefore, there is a potential risk of Pb exposure to residents in Liberty City by exposure in hotspot sites through both the primary and secondary pathways.