977 resultados para Infrared-to-visible
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The influence of the temperature on the nucleation of silver nanoparticles (NPs) in Tm3+/Yb3+ codoped PbO-GeO2 glasses was studied in this work. The infrared-to-visible frequency upconversion (UC) luminescence of Tm3+ ions was used to probe the NPs nucleation and the results were correlated with the increase of the heat-treatment temperature. Emission spectra in the blue-red region were measured by exciting the samples with a cw 980 nm diode laser in resonance with the Yb3+ transition (F-2(7/2) -> F-2(5/2)). The results were correlated with transmission electron microscopy measurements and revealed the different behavior of the nucleation process as a function of temperature.The enhanced UC emission in the visible region is attributed to the increased local field in the proximity of the silver NPs combined with the Yb3+ -> Tm3+ energy transfer. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Infrared-to-visible and infrared-to-infrared frequency upconversion processes in Yb3+-Tm3+ doped PbO-GeO2 glasses containing silver nanoparticles (NPs) were investigated. The experiments were performed by exciting the samples with a diode laser operating at 980 nm (in resonance with the Yb3+ transition F-2(7/2)-> F-2(5/2)) and observing the photoluminescence (PL) in the visible and infrared regions due to energy transfer from Yb3+ to Tm3+ ions followed by excited state absorption in the Tm3+ ions. The intensified local field in the vicinity of the metallic NPs contributes for enhancement in the PL intensity at 480 nm (Tm3+ :(1)G(4)-> H-3(6)) and at 800 nm (Tm3+ : H-3(4) -> H-3(6)). (C) 2009 American Institute of Physics. [doi:10.1063/1.3211300]
Resumo:
Erbium activated SiO2 -HfO2 planar waveguides, doped with Er3+ concentrations ranging from 0.01 to 4 mol%, were prepared by sol-gel method. The films were deposited on v-SiO2 and silica-on-silicon substrates using dip-coating technique. The waveguides show high densification degree, effective intermingling of the two film components, and uniform surface morphology. The waveguide deposited on silica-on-silicon substrates shows one single propagation mode at 1.5μm, with a confinement coefficient of 0.81 and an attenuation coefficient of 0.8 dB/cm at 632.8nm. Emission in the C-telecommunication band was observed at room temperature for all the samples upon continuouswave excitation at 980 nm or 514.5 nm. The shape of the emission band corresponding to the 4I13/2 → 4I15/2 transition is found to be almost independent both on erbium content and excitation wavelength, with a FWHM between 44 and 48 nm. The 4I13/2 level decay curves presented a single-exponential profile, with a lifetime ranging between 1.1 - 6.6 ms, depending on the erbium concentration. Infrared to visible upconversion luminescence upon continuous-wave excitation at 980 nm was observed for all the samples. Channel waveguide in rib configuration was obtained by etching the active film in order to have a well confined mode at 1.5 μm.
Resumo:
Fabrication and optical characterization of Tm3+/Yb3+ codoped PbO-GeO2 (PGO) pedestal-type waveguides are investigated in this work. It is important to mention that, to the best of authors' knowledge, the use of PGO pedestal-type waveguide has not been studied before. PGO thin films codoped with Tm3+ and Yb3+ were obtained through RF magnetron sputtering technique. The pedestal profile was obtained using conventional optical lithography procedures, followed by plasma etching and sputtering deposition. The profile of Tm3+/Yb3+ codoped PGO waveguides was observed by means of Scanning Electron Microscopy (SEM) measurements. Also the infrared and infrared-to-visible frequency upconversion luminescences of Tm3+ ions were measured exciting the samples with a cw 980 nm diode laser. Propagation losses around 11 dB/cm and 9 dB/cm were obtained at 630 and 1050 nm, respectively, for waveguides in the 20-100 μm width range. Single-mode propagation was observed for waveguides width up to 12 μm and 7 μm, at 1050 nm and 630 nm, respectively; larger waveguides width provided multi-mode propagation. The present results corroborate the possibility of using Tm3+/Yb3+ codoped PGO thin films as active waveguide for photonic applications. © 2013 Elsevier B.V. All rights reserved.
Resumo:
This work reports on the infrared-to-visible CW frequency upconversion from planar waveguides based on Er3+-Yb3+-doped 100-xSiO(2)-xTa(2)O(5) obtained by a sol-gel process and deposited onto a SiO2-Si substrate by dip-coating. Surface morphology and optical parameters of the planar waveguides were analyzed by atomic force microscopy and the m-line technique. The influence of the composition on the electronic properties of the glass-ceramic films was followed by the band gap ranging from 4.35 to 4.51 eV upon modification of the Ta2O5 content. Intense green and red emissions were detected from the upconversion process for all the samples after excitation at 980 nm. The relative intensities of the emission bands around 550 nm and 665 nm, assigned to the H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2) transitions, depended on the tantalum oxide content and the power of the laser source at 980 nm. The upconversion dynamics were investigated as a function of the Ta2O5 content and the number of photons involved in each emission process. Based on the upconversion emission spectra and 1931CIE chromaticity diagram, it is shown that color can be tailored by composition and pump power. The glass ceramic films are attractive materials for application in upconversion lasers and near infrared-to-visible upconverters in solar cells.
Resumo:
Frequency upconversion (UC) properties of Tm3+ doped TeO2-ZnO glasses containing silver nanoparticles (NPs) were investigated. Infrared-to-visible and infrared-to-infrared UC processes associated to the Tm3+ ions were studied by exciting the samples with a cw 1050 nm ytterbium laser. The luminescence intensity as a function of laser intensity was also measured using a pulsed 1047 nm Nd3+:YVO laser in order to determine the number of photons participating in the UC processes. Enhancement of the UC signals for samples heat-treated during various time intervals is attributed to the growth of the local field in the vicinity of the NPs. PL enhancement by one-order of magnitude was observed in the whole spectrum of the samples heat-treated during 48 h. On the other hand PL quenching was observed for the samples heat-treated more than 48 h. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
The study of band-edge lasing from dye-doped chiral nematic liquid crystals has thus far been largely restricted to visible wavelengths. In this paper, a wide range of commercially available laser dyes are examined for their suitability as infrared emitters within a chiral nematic host. Problems such as poor solubility and reduced quantum efficiencies are overcome, and successful band-edge lasing is demonstrated within the range of 735-850 nm, using the dyes LD800, HITC-P and DOTC-P. This paper also reports on progress towards widely tuneable liquid crystal lasers, capable of emission in the region 460- 850 nm. Key to this is the use of common pump source, capable of simultaneously exciting all of the dyes (both infrared and visible) that are present within the system. Towards this aim, we successfully demonstrate near-infrared lasing (800 nm) facilitated by Förster energy transfer between the visible dye DCM, and the infra-red dye LD800, enabling pump wavelengths anywhere between 420 and 532 nm to be used. These results demonstrate that small and low-cost tuneable visible to near-infrared laser sources are achievable, using a single common pump source. Such devices are envisaged to have wide-ranging applications including medical imaging (including optical coherence tomography), point-of-care optical medical diagnostics (such as flow cytometry), telecommunications, and optical signatures for security coatings. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
The study of band-edge lasing from dye-doped chiral nematic liquid crystals has thus far been largely restricted to visible wavelengths. In this paper, a wide range of commercially available laser dyes are examined for their suitability as infrared emitters within a chiral nematic host. Problems such as poor solubility and reduced quantum efficiencies are overcome, and successful band-edge lasing is demonstrated within the range of 735-850 nm, using the dyes LD800, HITC-P and DOTC-P. This paper also reports on progress towards widely tuneable liquid crystal lasers, capable of emission in the region 460- 850 nm. Key to this is the use of common pump source, capable of simultaneously exciting all of the dyes (both infrared and visible) that are present within the system. Towards this aim, we successfully demonstrate near-infrared lasing (800 nm) facilitated by Förster energy transfer between the visible dye DCM, and the infra-red dye LD800, enabling pump wavelengths anywhere between 420 and 532 nm to be used. These results demonstrate that small and low-cost tuneable visible to near-infrared laser sources are achievable, using a single common pump source. Such devices are envisaged to have wide-ranging applications including medical imaging (including optical coherence tomography), point-of-care optical medical diagnostics (such as flow cytometry), telecommunications, and optical signatures for security coatings. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
We report on the upconversion luminescence of a pure YVO4 single crystal excited by an infrared femtosecond laser. The luminescent spectra show that the upconversion luminescence comes from the transitions from the lowest excited states T-3(1), T-3(2) to the ground state (1)A(1) of the VO43-. The dependence of the fluorescence intensity on the pump power density of laser indicates that the conversion of infrared irradiation to visible emission is dominated by three-photon excitation process. We suggest that the simultaneous absorption of three infrared photons promotes the VO43- to excited states, which quickly cascade down to lowest excited states, and radiatively relax to ground states, resulting in the broad characteristic fluorescence of VO43-. (c) 2005 Optical Society of America.
Resumo:
We describe our research on the employment of an infrared upconversion screen made of electron trapping material (ETM) in combination with the high sensitivity of the S-20 photocathode responsive to visible radiation to produce a streak camera arrangement capable of viewing and recording infrared incident pulses. The ETM-based upconversion screen converts 800-1600 nm infrared radiation to visible light which is viewed or recorded by the S-20 photocathode. The peak values of the upconversion efficiency are located at 1165 nm for CaS:Eu, Sm and 1060 nm for CaS:Ce, Sm. The present experiment showed time resolution was 12.3 ps for a CaS:Eu, Sm screen and 8.4 ps for a CaS:Ce, Sm screen. The minimum detectability is 4.8 x 10(-9) J/mm(2) (minimum detectability of the coupled visible streak camera is 8.3x10(-10) J/mm(2)). Other parameters, such as spatial resolution and dynamic range, have also been measured and analyzed. The results show ETM can be used in the measurement of infrared ultrafast phenomena up to picosecond time domain. In consideration of the limited number of trapped electrons in ETM, the infrared-sensitive streak camera consisting of an ETM-based upconversion screen is suitable to operate in the single shot mode. (C) 1999 American Institute of Physics. [S0034-6748(99)00112-4].
Resumo:
We present the latest analysis and results from SEPPCoN (Survey of Ensemble Physical Properties of Cometary Nuclei). This on-going survey involves studying 100 JFCs - about 25% of the known population - at both mid-infrared and visible wave-lengths to constrain the distributions of sizes, shapes, spins, and albedos of this population. Having earlier reported results from measuring thermal emissions of our sample nuclei [1,2,3,4], we report here progress on the visible-wavelength observations that we have obtained at many ground-based facilities in Chile, Spain, and the United States. To date we have attempted observations of 91% of our sample of 100 JFCs, and at least 64 of those were successfully detected. In most cases the comets were at heliocentric distances between 3.0 and 6.5 AU so as to decrease the odds of a comet having a coma. Of the 64 detected comets, 48 were apparently bare, having no extended emission. Our datasets are further augmented by archival data and photometry from the NEAT program [5]. An important goal of SEPPCoN is to accumulate a large comprehensive set of high quality physical data on cometary nuclei in order to make accurate statistical comparisons with other minor-body populations such as Trojans, Centaurs, and Kuiper-belt objects. Information on the size, shape, spin-rate, albedo and color distributions is critical for understanding their origins and evolutionary processes affecting them.
Resumo:
Spectroscopic catalogues, such as GEISA and HITRAN, do not yet include information on the water vapour continuum that pervades visible, infrared and microwave spectral regions. This is partly because, in some spectral regions, there are rather few laboratory measurements in conditions close to those in the Earth’s atmosphere; hence understanding of the characteristics of the continuum absorption is still emerging. This is particularly so in the near-infrared and visible, where there has been renewed interest and activity in recent years. In this paper we present a critical review focusing on recent laboratory measurements in two near-infrared window regions (centred on 4700 and 6300 cm−1) and include reference to the window centred on 2600 cm−1 where more measurements have been reported. The rather few available measurements, have used Fourier transform spectroscopy (FTS), cavity ring down spectroscopy, optical-feedback – cavity enhanced laser spectroscopy and, in very narrow regions, calorimetric interferometry. These systems have different advantages and disadvantages. Fourier Transform Spectroscopy can measure the continuum across both these and neighbouring windows; by contrast, the cavity laser techniques are limited to fewer wavenumbers, but have a much higher inherent sensitivity. The available results present a diverse view of the characteristics of continuum absorption, with differences in continuum strength exceeding a factor of 10 in the cores of these windows. In individual windows, the temperature dependence of the water vapour self-continuum differs significantly in the few sets of measurements that allow an analysis. The available data also indicate that the temperature dependence differs significantly between different near-infrared windows. These pioneering measurements provide an impetus for further measurements. Improvements and/or extensions in existing techniques would aid progress to a full characterisation of the continuum – as an example, we report pilot measurements of the water vapour self-continuum using a supercontinuum laser source coupled to an FTS. Such improvements, as well as additional measurements and analyses in other laboratories, would enable the inclusion of the water vapour continuum in future spectroscopic databases, and therefore allow for a more reliable forward modelling of the radiative properties of the atmosphere. It would also allow a more confident assessment of different theoretical descriptions of the underlying cause or causes of continuum absorption.
Resumo:
Summary form only given. Broadly tunable compact visible laser sources in the spectral region of 500-650 nm are valuable in biophotonics, photomedicine and for many applications including spectroscopy, laser projection and confocal microscopy. Unfortunately, commercially available lasers of this spectral range are in practice bulky and inconvenient in use. An attractive method for the realization of portable visible laser sources is the frequency-doubling of the infrared laser diodes in a nonlinear crystal containing a waveguide [1]. Nonlinear crystal waveguides that offer an order-of-magnitude increase in the IR-to-visible conversion efficiency also enable a very different approach to second-harmonic generation (SHG) tunability in periodically-poled crystals, promising order-of-magnitude increase of wavelength range for SHG conversion. This is possible by utilization of a significant difference in the effective refractive indices of the high-order and low-order modes in multimode waveguides [2]. The recent availability of low-cost, good quality semiconductor diode lasers, offering the coverage of a broad spectral range between 1 µ?? and 1.3 µp? [3,4], in combination with well-established techniques to fabricate good quality waveguides in nonlinear crystals, allows compact tunable CW laser sources in the visible spectral region to be realized [2].
Resumo:
Au cours des dernières décennies, l’effort sur les applications de capteurs infrarouges a largement progressé dans le monde. Mais, une certaine difficulté demeure, en ce qui concerne le fait que les objets ne sont pas assez clairs ou ne peuvent pas toujours être distingués facilement dans l’image obtenue pour la scène observée. L’amélioration de l’image infrarouge a joué un rôle important dans le développement de technologies de la vision infrarouge de l’ordinateur, le traitement de l’image et les essais non destructifs, etc. Cette thèse traite de la question des techniques d’amélioration de l’image infrarouge en deux aspects, y compris le traitement d’une seule image infrarouge dans le domaine hybride espacefréquence, et la fusion d’images infrarouges et visibles employant la technique du nonsubsampled Contourlet transformer (NSCT). La fusion d’images peut être considérée comme étant la poursuite de l’exploration du modèle d’amélioration de l’image unique infrarouge, alors qu’il combine les images infrarouges et visibles en une seule image pour représenter et améliorer toutes les informations utiles et les caractéristiques des images sources, car une seule image ne pouvait contenir tous les renseignements pertinents ou disponibles en raison de restrictions découlant de tout capteur unique de l’imagerie. Nous examinons et faisons une enquête concernant le développement de techniques d’amélioration d’images infrarouges, et ensuite nous nous consacrons à l’amélioration de l’image unique infrarouge, et nous proposons un schéma d’amélioration de domaine hybride avec une méthode d’évaluation floue de seuil amélioré, qui permet d’obtenir une qualité d’image supérieure et améliore la perception visuelle humaine. Les techniques de fusion d’images infrarouges et visibles sont établies à l’aide de la mise en oeuvre d’une mise en registre précise des images sources acquises par différents capteurs. L’algorithme SURF-RANSAC est appliqué pour la mise en registre tout au long des travaux de recherche, ce qui conduit à des images mises en registre de façon très précise et des bénéfices accrus pour le traitement de fusion. Pour les questions de fusion d’images infrarouges et visibles, une série d’approches avancées et efficaces sont proposés. Une méthode standard de fusion à base de NSCT multi-canal est présente comme référence pour les approches de fusion proposées suivantes. Une approche conjointe de fusion, impliquant l’Adaptive-Gaussian NSCT et la transformée en ondelettes (Wavelet Transform, WT) est propose, ce qui conduit à des résultats de fusion qui sont meilleurs que ceux obtenus avec les méthodes non-adaptatives générales. Une approche de fusion basée sur le NSCT employant la détection comprime (CS, compressed sensing) et de la variation totale (TV) à des coefficients d’échantillons clairsemés et effectuant la reconstruction de coefficients fusionnés de façon précise est proposée, qui obtient de bien meilleurs résultats de fusion par le biais d’une pré-amélioration de l’image infrarouge et en diminuant les informations redondantes des coefficients de fusion. Une procédure de fusion basée sur le NSCT utilisant une technique de détection rapide de rétrécissement itératif comprimé (fast iterative-shrinking compressed sensing, FISCS) est proposée pour compresser les coefficients décomposés et reconstruire les coefficients fusionnés dans le processus de fusion, qui conduit à de meilleurs résultats plus rapidement et d’une manière efficace.