963 resultados para Indoor air quality
Resumo:
The relative contribution of the main mechanisms that control indoor air quality in residential flats was examined. Indoor and outdoor concentration measurements of different type pollutants (black carbon, SO2, O3, NO, NO2,) were monitored in three naturally ventilated residential flats in Athens, Greece. At each apartment, experiments were conducted during the cold as well as during the warm period of the year. The controlling parameters of transport and deposition mechanisms were calculated from the experimental data. Deposition rates of the same pollutant differ according to the site (different construction characteristics) and to the measuring period for the same site (variations in relative humidity and differences in furnishing). Differences in the black carbon deposition rates were attributed to different black carbon size distributions. The highest deposition rates were observed for O3 in the residential flats with the older construction and the highest humidity levels. The calculated parameters as well as the measured outdoor concentrations were used as input data of a one-compartment indoor air quality model, and the indoor concentrations, the production, and loss rates of the different pollutants were calculated. The model calculated concentrations are in good agreement with the measured values. Model simulations revealed that the mechanism that mainly affected the change rate of indoor black carbon concentrations was the transport from the outdoor environment, while the removal due to deposition was insignificant. During model simulations, it was also established that that the change rate of SO2 concentrations was governed by the interaction between the transport and the deposition mechanisms while NOX concentrations were mainly controlled through photochemical reactions and the transport from outdoors.
Resumo:
The Spanish NGO "Alianza por la Solidaridad" has installed improved cookstoves in 3000 households during 2012 and 2013 to improve energy efficiency reducing fuelwood consumption and to improve indoor air quality. The type of cookstoves were Noflaye Jeeg and Noflaye Jaboot and were installed in the Cassamance Natural Subregion covering part of Senegal, The Gambia and Guinea-Bissau. The Technical University of Madrid (UPM) has conducted a field study on a sample of these households to assess the effect of improved cookstoves on kitchen air quality. Measurements of carbon monoxide (CO) and fine particle matter (PM2.5) were taken for 24-hr period before and after the installation of improved cookstoves. The 24-hr mean CO concentrations were lower than the World Health Organization (WHO) guidelines for Guinea-Bissau but higher for Senegal and Gambia, even after the installation of improved cookstoves. As for PM2.5 concentrations, 24-hr mean were always higher than these guidelines. However, improved cookstoves produced significant reductions on 24-hr mean CO and PM2.5 concentrations in Senegal and for mean and maximum PM2.5 concentration on Gambia. Although this variability needs to be explained by further research to determine which other factors could affect indoor air pollution, the study provided a better understanding of the problem and envisaged alternatives to be implemented in future phases of the NGO project.
Resumo:
Three-dimensional computational simulations are performed to examine indoor environment and micro-environment around human bodies in an office in terms of thermal environment and air quality. In this study, personal displacement ventilation (PDV), including two cases with all seats taken and two middle seats taken, is compared with overall displacement ventilation (ODV) of all seats taken under the condition that supply temperature is 24℃ and air change rate is 60 l/s per workstation. When using PDV, temperature stratification, the characteristic of displacement ventilation, is obviously observed at the position of occupant’s head and clearer in the case with all seats taken. Verticalertical ertical temperature temperature temperature temperature temperature differences below height of the head areare under under under 2℃ in two cases in two cases in two cases in two cases in two cases in two cases in two cases in two cases with all seats taken,and the temperature with PDV is higher than that with ODV. Verticalertical ertical temperature temperature temperature temperature temperature temperature difference is under 3 under 3under 3 under 3℃ in the case in the case in the case in the case in the case in the case in the case with two middle seats taken. CO2 concentration is lower th is lower th is lower this lower this lower than 2 g/man 2 g/m an 2 g/man 2 g/man 2 g/man 2 g/m 3 in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. in the breath zone. The results indicate that PDV can be used in the room with big change of occupants’ number to satisfy the need of thermal comfort and air quality. When not all seats are taken, designers should increase supply air requirement or reduce its temperature for thermal comfort. INDEX TERMS
Resumo:
The quality of office indoor environments is considered to consist of those factors that impact the occupants according to their health and well-being and (by consequence) their productivity. Indoor Environment Quality (IEQ) can be characterized by four indicators: • Indoor air quality indicators • Thermal comfort indicators • Lighting indicators • Noise indicators. Within each indicator, there are specific metrics that can be utilized in determining an acceptable quality of an indoor environment based on existing knowledge and best practice. Examples of these metrics are: indoor air levels of pollutants or odorants; operative temperature and its control; radiant asymmetry; task lighting; glare; ambient noise. The way in which these metrics impact occupants is not fully understood, especially when multiple metrics may interact in their impacts. It can be estimated that the potential cost of lost productivity from poor IEQ may be much in excess of other operating costs of a building. However, the relative productivity impacts of each of the four indicators is largely unknown. The CRC Project ‘Regenerating Construction to Enhance Sustainability’ has a focus on IEQ impacts before and after building refurbishment. This paper provides an overview of IEQ impacts and criteria and the implementation of a CRC project that is currently researching these factors during the refurbishment of a Melbourne office building. IEQ measurements and their impacts will be reported in a future paper
Resumo:
The quality of office indoor environments is considered to consist of those factors that impact occupants according to their health and well-being and (by consequence) their productivity. Indoor Environment Quality (IEQ) can be characterized by four indicators: • Indoor air quality indicators • Thermal comfort indicators • Lighting indicators • Noise indicators. Within each indicator, there are specific metrics that can be utilized in determining an acceptable quality of an indoor environment based on existing knowledge and best practice. Examples of these metrics are: indoor air levels of pollutants or odorants; operative temperature and its control; radiant asymmetry; task lighting; glare; ambient noise. The way in which these metrics impact occupants is not fully understood, especially when multiple metrics may interact in their impacts. While the potential cost of lost productivity from poor IEQ has been estimated to exceed building operation costs, the level of impact and the relative significance of the above four indicators are largely unknown. However, they are key factors in the sustainable operation or refurbishment of office buildings. This paper presents a methodology for assessing indoor environment quality (IEQ) in office buildings, and indicators with related metrics for high performance and occupant comfort. These are intended for integration into the specification of sustainable office buildings as key factors to ensure a high degree of occupant habitability, without this being impaired by other sustainability factors. The assessment methodology was applied in a case study on IEQ in Australia’s first ‘six star’ sustainable office building, Council House 2 (CH2), located in the centre of Melbourne. The CH2 building was designed and built with specific focus on sustainability and the provision of a high quality indoor environment for occupants. Actual IEQ performance was assessed in this study by field assessment after construction and occupancy. For comparison, the methodology was applied to a 30 year old conventional building adjacent to CH2 which housed the same or similar occupants and activities. The impact of IEQ on occupant productivity will be reported in a separate future paper
Resumo:
Polybrominated diphenyl ethers (PBDEs) are lipophilic, persistent pollutants found worldwide in environmental and human samples. Exposure pathways for PBDEs remain unclear but may include food, air and dust. The aim of this study was to conduct an integrated assessment of PBDE exposure and human body burden using 10 matched samples of human milk, indoor air and dust collected in 2007–2008 in Brisbane, Australia. In addition, temporal analysis was investigated comparing the results of the current study with PBDE concentrations in human milk collected in 2002–2003 from the same region. PBDEs were detected in all matrices and the median concentrations of BDEs -47 and -209 in human milk, air and dust were: 4.2 and 0.3 ng/g lipid; 25 and 7.8 pg/m3; and 56 and 291 ng/g dust, respectively. Significant correlations were observed between the concentrations of BDE-99 in air and human milk (r = 0.661, p = 0.038) and BDE-153 in dust and BDE-183 in human milk (r = 0.697, p = 0.025). These correlations do not suggest causal relationships — there is no hypothesis that can be offered to explain why BDE-153 in dust and BDE-183 in milk are correlated. The fact that so few correlations were found in the data could be a function of the small sample size, or because additional factors, such as sources of exposure not considered or measured in the study, might be important in explaining exposure to PBDEs. There was a slight decrease in PBDE concentrations from 2002–2003 to 2007–2008 but this may be due to sampling and analytical differences. Overall, average PBDE concentrations from these individual samples were similar to results from pooled human milk collected in Brisbane in 2002–2003 indicating that pooling may be an efficient, cost-effective strategy of assessing PBDE concentrations on a population basis. The results of this study were used to estimate an infant's daily PBDE intake via inhalation, dust ingestion and human milk consumption. Differences in PBDE intake of individual congeners from the different matrices were observed. Specifically, as the level of bromination increased, the contribution of PBDE intake decreased via human milk and increased via dust. As the impacts of the ban of the lower brominated (penta- and octa-BDE) products become evident, an increased use of the higher brominated deca-BDE product may result in dust making a greater contribution to infant exposure than it does currently. To better understand human body burden, further research is required into the sources and exposure pathways of PBDEs and metabolic differences influencing an individual's response to exposure. In addition, temporal trend analysis is necessary with continued monitoring of PBDEs in the human population as well as in the suggested exposure matrices of food, dust and air.
Resumo:
Endotoxins can significantly affect the air quality in school environments. However, there is currently no reliable method for the measurement of endotoxins and there is a lack of reference values for endotoxin concentrations to aid in the interpretation of measurement results in school settings. We benchmarked the “baseline” range of endotoxin concentration in indoor air, together with endotoxin load in floor dust, and evaluated the correlation between endotoxin levels in indoor air and settled dust, as well as the effects of temperature and humidity on these levels in subtropical school settings. Bayesian hierarchical modeling indicated that the concentration in indoor air and the load in floor dust were generally (<95th percentile) < 13 EU/m3 and < 24,570 EU/m2, respectively. Exceeding these levels would indicate abnormal sources of endotoxins in the school environment, and the need for further investigation. Metaregression indicated no relationship between endotoxin concentration and load, which points to the necessity for measuring endotoxin levels in both the air and settled dust. Temperature increases were associated with lower concentrations in indoor air and higher loads in floor dust. Higher levels of humidity may be associated with lower airborne endotoxin concentrations.
Resumo:
This research investigated airborne particle characteristics and their dynamics inside and around the envelope of mechanically ventilated office buildings, together with building thermal conditions and energy consumption. Based on these, a comprehensive model was developed to facilitate the optimisation of building heating, ventilation and air conditioning systems, in order to protect the health of their occupants and minimise the energy requirements of these buildings.
Resumo:
Recent 'Global Burden of Disease' studies have provided quantitative evidence of the significant role air pollution plays as a human health risk factor (Lim et al., The Lancet, 380: 2224–2260, 2012). Tobacco smoke, including second hand smoke, household air pollution from solid fuels and ambient particulate matter are among the top risks, leading to lower life expectancy around the world. Indoor air constitutes an environment particularly rich in different types of pollutants, originating from indoor sources, as well as penetrating from outdoors, mixing, interacting or growing (when considering microbes) under the protective enclosure of the building envelope. Therefore, it is not a simple task to follow the dynamics of the processes occurring there, or to quantify the outcomes of the processes in terms of pollutant concentrations and other characteristics. This is further complicated by limitations such as building access for the purpose of air quality monitoring, or the instrumentation which can be used indoors, because of their possible interference with the occupants comfort (due to their large size, noise generated or amount of air drawn). European studies apportioned contributions of indoor versus outdoor sources of indoor air contaminants in 26 European countries and quantified IAQ associated DALYs (Disability-Adjusted Life Years) in those countries (Jantunen et al., Promoting actions for healthy indoor air (IAIAQ), European Commission Directorate General for Health and Consumers, Luxembourg, 2011). At the same time, there has been an increase in research efforts around the world to better understand the sources, composition, dynamics and impacts of indoor air pollution. Particular focus has been directed towards the contemporary sources, novel pollutants and new detection methods. The importance of exposure assessment and personal exposure, the majority of which occurs in various indoor micro¬environments, has also been realized. Overall, this emerging knowledge has been providing input for global assessments of indoor environments, the impact of indoor pollutants and their science based management and control. It was a major outcome of recent international conferences that interdisciplinarity and especially a better colla¬boration between exposure and indoor sciences would be of high benefit for the health related evaluation of environmental stress factors and pollutants. A very good example is the combination of biomonitoring and indoor air, particle and dust analysis to study the exposure routes of semi volatile organic compounds (SVOCs). We have adopted the idea of combining the forces of exposure and indoor sciences for this Special Issue, identified new and challenging topics and have attracted colleagues who are top researchers in their field to provide their inputs. The Special Issue includes papers, which collectively present advances in current research topics and in our view, build the bridge between indoor and exposure sciences.
Resumo:
In school environments, children are constantly exposed to mixtures of airborne substances, derived from a variety of sources, both in the classroom and in the school surroundings. It is important to evaluate the hazardous properties of these mixtures, in order to conduct risk assessments of their impact on chil¬dren’s health. Within this context, through the application of a Maximum Cumulative Ratio approach, this study aimed to explore whether health risks due to indoor air mixtures are driven by a single substance or are due to cumulative exposure to various substances. This methodology requires knowledge of the concentration of substances in the air mixture, together with a health related weighting factor (i.e. reference concentration or lowest concentration of interest), which is necessary to calculate the Hazard Index. Maximum cumulative ratio and Hazard Index values were then used to categorise the mixtures into four groups, based on their hazard potential and therefore, appropriate risk management strategies. Air samples were collected from classrooms in 25 primary schools in Brisbane, Australia. Analysis was conducted based on the measured concentration of these substances in about 300 air samples. The results showed that in 92% of the schools, indoor air mixtures belonged to the ‘low concern’ group and therefore, they did not require any further assessment. In the remaining schools, toxicity was mainly governed by a single substance, with a very small number of schools having a multiple substance mix which required a combined risk assessment. The proposed approach enables the identification of such schools and thus, aides in the efficient health risk management of pollution emissions and air quality in the school environment.
Resumo:
Health is an important aspect of everybody’s life. Today, there is an increasing recognition and commitment to the pursuit of health both within government and beyond. Any attempt on the part of the " State to protect and promote people’s health, in turn, must be accompanied by effective controls on air quality, as air constitutes ‘ one of the important elements of man’s life and the consequences of air pollution covers a very wide spectrum ranging from material ---damage to personal discomfort and illness. The broad social and economic objectives adumbrated in the Directive Principles of State Policy including the commitment to improve public health underlying in Article 47 and the obligation to preserve and protect-the natural environment cast under Article 48A of the Constitution are being used as versatile weapons by the State to regulate the public health scenario. Preservation and maintenance of air quality is a significant area within the sphere of public health, where the regulatory arm of the law is not adequately touched and in this arena urgent State intervention through legislative and administrative action is called for in the well-being of the society. Judiciary also plays a pivotal role in this arena in the larger interest of the society and for the benefit of the present and future generations. The research study is an attempt to analyze how far the existing legal system, for maintaining air quality and in controlling air pollution, is effective in protecting public health. The study also analyzes the limitations of the control mechanisms. The study focuses on industrial air pollution, indoor and personal air pollution, vehicular pollution and noise pollution which are today appearing as the major public health hazards affecting the air quality. However, this is not to overlook the importance of controls required under other areas of public health.
Resumo:
Manufactured housing has been found to have substantial levels of formaldehyde in the indoor air. Because mobile homes are more affordable than conventional housing, there has been a large increase in their use in the U.S. This increase in mobile home use has been substantial in the sunbelt regions such as Texas, where high temperatures and humidities may enhance out-gassing of formaldehyde and other volatile organic compounds from construction and furnishing materials and increase any potential health hazards.^ The influences of environmental, architectural and temporal factors on the presence of indoor formaldehyde and other organic compounds were investigated in conjunction with the Texas Indoor Air Quality Study of manufactured housing. A matched pair of mobile homes, one with electric heating and cooking utilities and the other with propane gas utilities, were used for a series of controlled experiments over a fourteen month period from October, 1982 through November, 1983.^ Over this fourteen month period formaldehyde levels decreased approximately 33%. Daily fluctuations of 20% to 40% were observed even with a constant indoor temperature. An increase in indoor temperature of 8(DEGREES)C doubled the measured formaldehyde concentration. Opening windows resulted in decreases of indoor formaldehyde levels of up to 50%. Studies of the impact of propane as a cooking source showed no increase in formaldehyde levels with stove use.^ The presence and concentration of selected volatile organic compounds is influenced greatest by occupancy. Occupants continually open and close windows and doors, vary the operation and settings (temperature) of air control systems, and vary in their selection of furnishings and use of consumer products, which may act as sources of indoor air contaminants. ^