901 resultados para Indo-Australian Region
Resumo:
With the stabilization of world finfish catches in general, and the depletion of a number of fish stocks that used to support industrial-scale fisheries, increasing attention is now being paid, to the so-called unconventional marine resources, which include many species of cephalopods. One of such important cephalopod resource is the tropical Indo-Pacific pelagic oceanic squid Sthenoteuthis oualaniensis. It is the most abundant large sized squid in the Indo- Pacific region with an estimated biomass of 8-11 metric tons. However, its distribution, biology, life cycle and nutrient value in the south west coast of India are still poorly known. So any new information of this species in the waters off the south west coast of India has important scientific significance for effective and rational utilization of this Oceanic fishery resources, especially during the time of depletion of shallow water resources. In view of that this study investigated different aspects of the Sthenoteuthis oualaniensis, such as morphometry, growth, mortality, maturation, spawning, food, feeding and biochemical composition in the south west coast of India to understand its possible prospective importance for commercial fishing and management of its fishery
Resumo:
The Madden-Julian Oscillation (MJO) is the dominant mode of intraseasonal variability in the Trop- ics. It can be characterised as a planetary-scale coupling between the atmospheric circulation and organised deep convection that propagates east through the equatorial Indo-Pacific region. The MJO interacts with weather and climate systems on a near-global scale and is a crucial source of predictability for weather forecasts on medium to seasonal timescales. Despite its global signifi- cance, accurately representing the MJO in numerical weather prediction (NWP) and climate models remains a challenge. This thesis focuses on the representation of the MJO in the Integrated Forecasting System (IFS) at the European Centre for Medium-Range Weather Forecasting (ECMWF), a state-of-the-art NWP model. Recent modifications to the model physics in Cycle 32r3 (Cy32r3) of the IFS led to ad- vances in the simulation of the MJO; for the first time the observed amplitude of the MJO was maintained throughout the integration period. A set of hindcast experiments, which differ only in their formulation of convection, have been performed between May 2008 and April 2009 to asses the sensitivity of MJO simulation in the IFS to the Cy32r3 convective parameterization. Unique to this thesis is the attribution of the advances in MJO simulation in Cy32r3 to the mod- ified convective parameterization, specifically, the relative-humidity-dependent formulation for or- ganised deep entrainment. Increasing the sensitivity of the deep convection scheme to environmen- tal moisture is shown to modify the relationship between precipitation and moisture in the model. Through dry-air entrainment, convective plumes ascending in low-humidity environments terminate lower in the atmosphere. As a result, there is an increase in the occurrence of cumulus congestus, which acts to moisten the mid-troposphere. Due to the modified precipitation-moisture relationship more moisture is able to build up which effectively preconditions the tropical atmosphere for the transition to deep convection. Results from this thesis suggest that a tropospheric moisture control on convection is key to simulating the interaction between the physics and large-scale circulation associated with the MJO.
Resumo:
Based on recent surveys of the freshwater decapod fauna, distributional data of five exotic species of freshwater decapod crustaceans for the hydrographic basins of the state of São Paulo are presented, as part of a large initiative for a comprehensive survey of the state's biodiversity (BIOTA-FAPESP Program). These species are the North American crayfish Procambarus clarkii (Girard) (Cambaridae), the crab Dilocarcinus pagei Stimpson (Trichodactylidae) from the Amazon and Paraguay/lower Parana River Basins, and the palaemonid shrimps Macrobrachium rosenbergii (De Man), from the Indo-Pacific region, Macrobrachium amazonicum (Heller) and Macrobrachium jelskii (Miers), both from the Orinoco, Amazon and the Paraguay/lower Parana River Basins. Possible modes by which their introduction might have occurred are commented upon and potential consequences are discussed.
Resumo:
Nycterilampus Montrouzier, 1860, from Oceania, is removed from junior synonymy with Tetrigus Candeze, 1857, and is redescribed and revalidated. The genus includes two species, N. lifuanus Montrouzier, 1860, and N. velutinus Fleutiaux, 1891 both from New Caledonia. A comparative study of the morphological characters of males and females, including the reproductive organs of the Nycterilampus species and Tetrigus parallelus Candeze, 1857 (type-species) is presented. A key to Nycterilampus species and their separation from Tetrigus parallelus is given.
Resumo:
We describe herein a new species of Catapagurus, the twenty-second species of the genus. This is the third species of Catapagurus recorded from the western Atlantic and the second from Brazil; the remaining 19 species occur in the Indo-Pacific region.
Resumo:
Recent studies of the large cheilostome bryozoan genus Scrupocellaria have shown a greater degree of taxonomically informative morphological variation in zooids, opesia, and polymorphic structures than previously recognized. Only one subgenus has been named within the genus, Retiscrupocellaria d'Hondt, 1988, erected for Scrupocellaria jolloisii. In this work we further analyse S. jolloisii and its related species, resurrecting an earlier genus name, Licornia van Beneden, 1850 for Licornia jolloisii, and nine relatives, L. annectens, L. cervicornis, L. cyclostoma, L. diadema, L. ferox, L. gaspari, L. longispinosa, L. macropora, and L. prolata. Licornia jolloisii was originally described from the Red Sea, and most species of the genus occur in the Indo-Pacific region. The species, however, has now been found in the Western Atlantic, in the Florida Keys, US, and in Bahia de Todos Santos, Brazil.
Resumo:
Pteropods are a group of holoplanktonic gastropods for which global biomass distribution patterns remain poorly resolved. The aim of this study was to collect and synthesize existing pteropod (Gymnosomata, Thecosomata and Pseudothecosomata) abundance and biomass data, in order to evaluate the global distribution of pteropod carbon biomass, with a particular emphasis on its seasonal, temporal and vertical patterns. We collected 25 902 data points from several online databases and a number of scientific articles. The biomass data has been gridded onto a 360 x 180° grid, with a vertical resolution of 33 WOA depth levels. Data has been converted to NetCDF format. Data were collected between 1951-2010, with sampling depths ranging from 0-1000 m. Pteropod biomass data was either extracted directly or derived through converting abundance to biomass with pteropod specific length to weight conversions. In the Northern Hemisphere (NH) the data were distributed evenly throughout the year, whereas sampling in the Southern Hemisphere was biased towards the austral summer months. 86% of all biomass values were located in the NH, most (42%) within the latitudinal band of 30-50° N. The range of global biomass values spanned over three orders of magnitude, with a mean and median biomass concentration of 8.2 mg C l-1 (SD = 61.4) and 0.25 mg C l-1, respectively for all data points, and with a mean of 9.1 mg C l-1 (SD = 64.8) and a median of 0.25 mg C l-1 for non-zero biomass values. The highest mean and median biomass concentrations were located in the NH between 40-50° S (mean biomass: 68.8 mg C l-1 (SD = 213.4) median biomass: 2.5 mg C l-1) while, in the SH, they were within the 70-80° S latitudinal band (mean: 10.5 mg C l-1 (SD = 38.8) and median: 0.2 mg C l-1). Biomass values were lowest in the equatorial regions. A broad range of biomass concentrations was observed at all depths, with the biomass peak located in the surface layer (0-25 m) and values generally decreasing with depth. However, biomass peaks were located at different depths in different ocean basins: 0-25 m depth in the N Atlantic, 50-100 m in the Pacific, 100-200 m in the Arctic, 200-500 m in the Brazilian region and >500 m in the Indo-Pacific region. Biomass in the NH was relatively invariant over the seasonal cycle, but more seasonally variable in the SH. The collected database provides a valuable tool for modellers for the study of ecosystem processes and global biogeochemical cycles.
Resumo:
During ODP Leg 123, abundant and well-preserved Neocomian radiolarians were recovered at Site 765 (Argo Abyssal Plain) and Site 766 (lower Exmouth Plateau). Assemblages are characterized by the numerical dominance of a small number of non-tethyan forms and by the scarcity of tethyan taxa. Remarkable contrasts exist between radiolarian assemblages extracted from claystones of Site 765 and reexamined DSDP Site 261, and faunas recovered from radiolarian sand layers, only found at Site 765. Clay faunas are unusual in their low diversity of apparently ecologically tolerant (or solution resistant?), ubiquist species, whereas sand faunas are dominated by non-tethyan taxa. Comparisons with Sites 766 and 261, as well as sedimentological observations, lead to the conclusion that this faunal contrast resulted from a difference in provenance, rather than from hydraulic sorting or selective dissolution. The ranges of 27 tethyan taxa from Site 765 were compared to the tethyan radiolarian zonation by Jud ( 1992 ) by means of the Unitary Associations Method. This calculation allows to directly date the Site 765 assemblages and to estimate the amount of truncation of ranges for tethyan taxa. Over 70% of the already few tethyan species of Site 765, have truncated ranges during the Valanginian-Hauterivian. Radiolarian assemblages recovered from claystones at Sites 765 and 261 in the Argo Basin apparently reflect restricted oceanic conditions during the latest Jurassic-Barremian. Neither sedimentary facies nor faunal associations bear any resemblance to what we know from typical tethyan sequences. We conclude that the Argo Basin was paleoceanographically separated from the Tethys during the Late Jurassic and part of the Early Cretaceous by its position at higher paleolatitudes and/or by enclosing land masses. Assemblages recovered from radiolarian sand layers are dominated by non-tethyan species that are interpreted as circumantarctic. Their first appearance in the late Berriasian-early Valanginian predates the oceanization of the Indo-Australian breakup (M11, late Valanginian), but coincides with a sharp increase in margin-derived pelagic turbidites. The Indo-Australian rift zone and the adjacent margins must have been submerged deeply enough to allow an intermittent influx of circumantarctic cold water into the Argo Basin, creating increased bottom current activity. Cold-water radiolarians carried into the Argo Basin upwelled along the margin, died, and accumulated in radiolarite layers due to winnowing by bottom currents. High rates of faunal change and the sharp increase of bottom current activity are thought to be synchronous with possible pronounced late Berriasian-early Valanginian lowstands in sea level. Hypothetically, both phenomena might have been caused by a tendency to glaciation on the Antarctic-Australian continent, which was for the first time isolated from the rest of Gondwana by oceanic seaways as a result of Jurassic-Early Cretaceous sea-floor spreading. The absence of most typical tethyan radiolarian species during the Valanginian-Hauterivian is interpreted as reflecting a time of strong influx of circumantarctic cold water following oceanization (M 11) and rapid spreading between Southeast India and West Australia. The reappearance and gradual abundance/diversity increase of tethyan taxa, along with the still dominant circumantarctic species are thought to result from overall more equitable climatic conditions during the Barremian-early Aptian and from the establishment of an oceanic connection with the Tethys Ocean during the early Aptian.
Resumo:
Paleotemperature estimates based on coral Sr/Ca have not been widely accepted because the reconstructed glacial-Holocene shift in tropical sea-surface temperature (~4-6°C) is larger than that indicated by foraminiferal Mg/Ca (~2-4°C). We show that corals over-estimate changes in sea-surface temperature (SST) because their records are attenuated during skeletogenesis within the living tissue layer. To quantify this process, we microprofiled skeletal mass accumulation within the tissue layer of Porites from Australasian coral reefs and laboratory culturing experiments. The results show that the sensitivity of the Sr/Ca and d18O thermometers in Porites will be suppressed, variable, and dependent on the relationship between skeletal growth rate and mass accumulation within the tissue layer. Our findings help explain why d18O-SST sensitivities for Porites range from -0.08 per mil/°C to -0.22 per mil/°C and are always less than the value of -0.23 per mil/°C established for biogenic aragonite. Based on this observation, we recalibrated the coral Sr/Ca thermometer to determine a revised sensitivity of -0.084 mmol/mol/°C. After rescaling, most of the published Sr/Ca-SST estimates for the Indo-Pacific region for the last ~14,000 years (-7°C to +2°C relative to modern) fall within the 95% confidence envelope of the foraminiferal Mg/Ca-SST records. We conclude that two types of calibration scales are required for coral paleothermometry; an attenuated Porites-specific thermometer sensitivity for studies of seasonal to interannual change in SST and, importantly, the rescaled -0.084 mmol/mol/°C Sr/Ca sensitivity for studies of 20th-century trends and millennial-scale changes in mean SST. The calibration-scaling concept will apply to the development of transfer functions for all geochemical tracers in corals.
Resumo:
Includes volume "hors série," issued at Buitenzorg (Java) May 29, 1944.
Resumo:
Abstract Two species of mangrove trees of Indo- Pacific origin have naturalized in tropical Atlantic mangrove forests in South Florida after they were planted and nurtured in botanic gardens. Two Bruguiera gymnorrhiza trees that were planted in the intertidal zone in 1940 have given rise to a population of at least 86 trees growing interspersed with native mangrove species Rhizophora mangle, Avicennia germinans and Laguncularia racemosa along 100 m of shoreline; the population is expanding at a rate of 5.6% year-1. Molecular genetic analyses confirm very low genetic diversity, as expected from a population founded by two individuals. The maximumnumber of alleles at any locus was three, and we measured reduced heterozygosity compared to native-range populations. Lumnitzera racemosa was introduced multiple times during the 1960s and 1970s, it has spread rapidly into a forest composed of native R. mangle, A. germinans, Laguncularia racemosa and Conocarpus erectus and now occupies 60,500 m2 of mangrove forest with stem densities of 24,735 ha-1. We estimate the population growth rate of Lumnitzera racemosa to be between 17 and 23% year-1. Populations of both species of naturalized mangroves are dominated by young individuals. Given the long life and water-dispersed nature of propagules of the two exotic species, it is likely that they have spread beyond our survey area. We argue that the species-depauperate nature of tropical Atlantic mangrove forests and close taxonomic relatives in the more species-rich Indo-Pacific region result in the susceptibility of tropical Atlantic mangrove forests to invasion by Indo-Pacific mangrove species.