950 resultados para Immunoglobulin Superfamily


Relevância:

20.00% 20.00%

Publicador:

Resumo:

De novo mass spectrometric sequencing of two Conus peptides, Vi1359 and Vi1361, from the vermivorous cone snail Conus virgo, found off the southern Indian coast, is presented. The peptides, whose masses differ only by 2 Da, possess two disulfide bonds and an amidated C-terminus. Simple chemical modifications and enzymatic cleavage coupled with matrix assisted laser desorption ionization (MALDI) mass spectrometric analysis aided in establishing the sequences of Vi1359, ZCCITIPECCRI-NH2, and Vi1361, ZCCPTMPECCRI-NH2, Which differ only at residues 4 and 6 (Z = pyroglutamic acid). The presence of the pyroglutamyl residue at the N-terminus was unambiguously identified by chemical hydrolysis of the cyclic amide, followed by esterification. The presence of Ile residues in both the peptides was confirmed from high-energy collision induced dissociation (CID) studies, using the observation Of W-n- and d(n)-ions as a diagnostic. Differential cysteine labeling, in conjunction with MALDI-MS/MS, permitted establishment of disulfide connectivity in both peptides as Cys2-Cys9 and Cys3-Cys10. The cysteine pattern clearly reveals that the peptides belong to the class of T-superfamily conotoxins, in particular the T-1 superfamily.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pathogenic members of the picornavirus superfamily have adverse effects on humans, their crops and their livestock. As structure is related to function, detailed structural studies on these viruses are important not only for fundamental understanding of the viral life cycle, but also for the rational design of vaccines and inhibitors for disease control. These viruses have positive sense, single-stranded RNA genomes enclosed in a protein capsid. X-ray crystallography and cryo-electron microscopy studies have revealed that the isometric members of this group have icosahedrally-symmetric capsids made up of 60 copies of each of the structural proteins. The members that infect animal cells often employ one or more cellular receptors to facilitate cell entry which in some cases is known to initiate the uncoating sequence of the genome. The nature of the interactions between individual viruses and alternative cellular receptors has rarely been probed. The capsid assembly of the members of the picornavirus superfamily is considered to be cooperative and the interactions of RNA and capsid proteins are thought to play an important role in orchestrating virus assembly. The major aims of this thesis were to solve the structures of blackcurrant reversion virus (BRV), human parechovirus 1 (HPEV1) and coxsackievirus A7 (CAV7), as well as the structure of HPEV1 complexed with two of its cellular receptors using cryo-electron microscopy, three-dimensional image reconstruction and homology modeling. Each of the selected viruses represents a taxonomic group where little or no structural data was previously available. The results enabled the detailed comparison of the new structures to those of known picornaviruses, the identification of surface-exposed epitopes potentially important for host interaction, the mapping of RNA-capsid protein interactions and the elucidation of the basis for the specificity of two different receptor molecules for the same capsid. This work will form the basis for further studies on the influence of RNA on parechovirus assembly as a potential target for drug design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate the modes of inheritance of serum immunoglobulin E (IgE) levels and atopic disease, serum IgE levels and data on allergic disease were obtained from 42 families ascertained through asthmatic children visiting an allergy clinic. Although the mean IgE levels were elevated (mean 637 U/ml), the prevalence of atopic disease in this population was surprisingly low. When the data were analyzed using complex segregation analysis, no major locus could be detected. Moreover, the polygenic heritability was unexpectedly small even though the correlation between serum IgE levels and the liability to atopic disease was around 0.4. Given this unusual set of findings, it is postulated that parasitic infections in this population have (in accordance with well-established results of parasitic disease) caused both elevated levels of serum IgE and a decreased prevalence of allergic disease with the possible masking of the various genetic components of serum IgE levels and atopic disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) play a critical role in the maintenance of immune tolerance. Intravenous immunoglobulin (IVIg), a therapeutic preparation of normal pooled human IgG, expands Tregs in various experimental models and in patients. However, the cellular and molecular mechanisms by which IVIg expands Tregs are relatively unknown. As Treg expansion in the periphery requires signaling by antigen-presenting cells such as dendritic cells (DCs) and IVIg has been demonstrated to modulate DC functions, we hypothesized that IVIg induces distinct signaling events in DCs that subsequently mediate Treg expansion. We demonstrate that IVIg expands Tregs via induction of cyclooxygenase (COX)-2-dependent prostaglandin E2 (PGE(2)) in human DCs. However, costimulatory molecules of DCs such as programmed death ligands, OX40 ligand, and inducible T-cell costimulator ligands were not implicated. Inhibition of PGE(2) synthesis by COX-2 inhibitors prevented IVIg-mediated Treg expansion in vitro and significantly diminished IVIg-mediated Treg expansion in vivo and protection from disease in experimental autoimmune encephalomyelitis model. IVIg-mediated COX-2 expression, PGE(2) production, and Treg expansion were mediated in part via interaction of IVIg and F(ab('))(2) fragments of IVIg with DC-specific intercellular adhesion molecule-3-grabbing nonintegrin. Our results thus uncover novel cellular and molecular mechanism by which IVIg expands Tregs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The venom of Conus figulinus, a vermivorous cone snail, found in the south east coast of India, has been studied in an effort to identify novel peptide toxins. The amino acid sequences of seven peptides have been established using de novo mass spectrometric based sequencing methods. Among these, three peptides belong to the M-Superfamily conotoxins, namely, Fi3a, Fi3b, and Fi3c, and one that belongs to the T-Superfamily, namely, Fi5a. The other three peptides are contryphans, namely, contryphans fib, fic, and fid. Of these Fi3b, Fi3c, Fi5a, and contryphan fib are novel and are reported for the first time from venom of C.figulinus. The details of the sequencing methods and the relationship of these peptides with other M'-Superfamily conotoxins from the fish hunting and mollusk hunting clades are discussed. These novel peptides could serve as a lead compounds for the development of neuropharmacologically important drugs. Copyright (c) 2014 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipocalins constitute a superfamily of extracellular proteins that are found in all three kingdoms of life. Although very divergent in their sequences and functions, they show remarkable similarity in 3-D structures. Lipocalins bind and transport small hydrophobic molecules. Earlier sequence-based phylogenetic studies of lipocalins highlighted that they have a long evolutionary history. However the molecular and structural basis of their functional diversity is not completely understood. The main objective of the present study is to understand functional diversity of the lipocalins using a structure-based phylogenetic approach. The present study with 39 protein domains from the lipocalin superfamily suggests that the clusters of lipocalins obtained by structure-based phylogeny correspond well with the functional diversity. The detailed analysis on each of the clusters and sub-clusters reveals that the 39 lipocalin domains cluster based on their mode of ligand binding though the clustering was performed on the basis of gross domain structure. The outliers in the phylogenetic tree are often from single member families. Also structure-based phylogenetic approach has provided pointers to assign putative function for the domains of unknown function in lipocalin family. The approach employed in the present study can be used in the future for the functional identification of new lipocalin proteins and may be extended to other protein families where members show poor sequence similarity but high structural similarity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of a new cysteine framework (-C-CC-C-C-C) ``M''-superfamily conotoxin, Mo3964, shows it to have a beta-sandwich structure that is stabilized by inter-sheet cross disulfide bonds. Mo3964 decreases outward K+ currents in rat dorsal root ganglion neurons and increases the reversal potential of the Na(V)1.2 channels. The structure of Mo3964 (PDB ID: 2MW7) is constructed from the disulfide connectivity pattern, i.e., 1-3, 2-5, and 4-6, that is hitherto undescribed for the ``M''-superfamily conotoxins. The tertiary structural fold has not been described for any of the known conus peptides. NOE (549), dihedral angle (84), and hydrogen bond (28) restraints, obtained by measurement of (h3)J(NC') scalar couplings, were used as input for structure calculation. The ensemble of structures showed a backbone root mean square deviation of 0.68 +/- 0.18 angstrom, with 87% and 13% of the backbone dihedral (phi, psi) angles lying in the most favored and additional allowed regions of the Ramachandran map. The conotoxin Mo3964 represents a new bioactive peptide fold that is stabilized by disulfide bonds and adds to the existing repertoire of scaffolds that can be used to design stable bioactive peptide molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uracil DNA glycosylases (UDGs) are an important group of DNA repair enzymes, which pioneer the base excision repair pathway by recognizing and excising uracil from DNA. Based on two short conserved sequences (motifs A and B), UDGs have been classified into six families. Here we report a novel UDG, UdgX, from Mycobacterium smegmatis and other organisms. UdgX specifically recognizes uracil in DNA, forms a tight complex stable to sodium dodecyl sulphate, 2-mercaptoethanol, urea and heat treatment, and shows no detectable uracil excision. UdgX shares highest homology to family 4 UDGs possessing Fe-S cluster. UdgX possesses a conserved sequence, KRRIH, which forms a flexible loop playing an important role in its activity. Mutations of H in the KRRIH sequence to S, G, A or Q lead to gain of uracil excision activity in MsmUdgX, establishing it as a novel member of the UDG superfamily. Our observations suggest that UdgX marks the uracil-DNA for its repair by a RecA dependent process. Finally, we observed that the tight binding activity of UdgX is useful in detecting uracils in the genomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feasibility of using protein A to immobilize antibody on silicon surface for a biosensor with imaging ellipsometry was presented in this study. The amount of human IgG bound with anti-IgG immobilized by the protein A on silicon surface was much more than that bound with anti-IgG immobilized by physical adsorption. The result indicated that the protein A could be used to immobilize antibody molecules in a highly oriented manner and maintain antibody molecular functional configuration on the silicon surface. High reproducibility of the amount of antibody immobilization and homogenous antibody adsorption layer on surfaces could be obtained by this immobilization method. Imaging ellipsometry has been proven to be a fast and reliable detection method and sensitive enough to detect small changes in a molecular monolayer level. The combination of imaging ellipsometry and surface modification with protein A has the potential to be further developed into an efficient immunoassay protein chip.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of cell-cell interactions in the nervous system are mediated by immunoglobulin gene superfamily members. For example, neuroglian, a homophilic neural cell adhesion molecule in Drosophila, has an extracellular portion comprising six C- 2 type immunoglobulin-like domains followed by five fibronectin type III (FnIII) repeats. Neuroglian shares this domain organization and significant sequence identity with Ll, a murine neural adhesion molecule that could be a functional homologue. Here I report the crystal structure of a proteolytic fragment containing the first two FnIII repeats of neuroglian (NgFn 1,2) at 2.0Å. The interpretation of photomicrographs of rotary shadowed Ng, the entire extracellular portion of neuroglian, and NgFnl-5, the five neuroglian Fn III domains, is also discussed.

The structure of NgFn 1,2 consists of two roughly cylindrical β-barrel structural motifs arranged in a head-to-tail fashion with the domains meeting at an angle of ~120, as defined by the cylinder axes. The folding topology of each domain is identical to that previously observed for single FnIII domains from tenascin and fibronectin. The domains of NgFn1,2 are related by an approximate two fold screw axis that is nearly parallel to the longest dimension of the fragment. Assuming this relative orientation is a general property of tandem FnIII repeats, the multiple tandem FnIII domains in neuroglian and other proteins are modeled as thin straight rods with two domain zig-zag repeats. When combined with the dimensions of pairs of tandem immunoglobulin-like domains from CD4 and CD2, this model suggests that neuroglian is a long narrow molecule (20 - 30 Å in diameter) that extends up to 370Å from the cell surface.

In photomicrographs, rotary shadowed Ng and NgFn1-5 appear to be highly flexible rod-like molecules. NgFn 1-5 is observed to bend in at least two positions and has a mean total length consistent with models generated from the NgFn1,2 structure. Ng molecules have up to four bends and a mean total length of 392 Å, consistent with a head-to-tail packing of neuroglian's C2-type domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neonatal Fe receptor (FeRn) binds the Fe portion of immunoglobulin G (IgG) at the acidic pH of endosomes or the gut and releases IgG at the alkaline pH of blood. FeRn is responsible for the maternofetal transfer of IgG and for rescuing endocytosed IgG from a default degradative pathway. We investigated how FeRn interacts with IgG by constructing a heterodimeric form of the Fe (hdFc) that contains one FeRn binding site. This molecule was used to characterize the interaction between one FeRn molecule and one Fe and to determine under what conditions FeRn forms a dimer. The hdFc binds one FeRn molecule at pH 6.0 with a K_d of 80 nM. In solution and with FeRn anchored to solid supports, the heterodimeric Fe does not induce a dimer of FeRn molecules. FcRnhdFc complex crystals were obtained and the complex structure was solved to 2.8 Å resolution. Analysis of this structure refined the understanding of the mechanism of the pH-dependent binding, shed light on the role played by carbohydrates in the Fe binding, and provided insights on how to design therapeutic IgG antibodies with longer serum half-lives. The FcRn-hdFc complex in the crystal did not contain the FeRn dimer. To characterize the tendency of FeRn to form a dimer in a membrane we analyzed the tendency of the hdFc to induce cross-phosphorylation of FeRn-tyrosine kinase chimeras. We also constructed FeRn-cyan and FeRn-yellow fluorescent proteins and have analyzed the tendency of these molecules to exhibit fluorescence resonance energy transfer. As of now, neither of these analyses have lead to conclusive results. In the process of acquiring the context to appreciate the structure of the FcRn-hdFc interface, we developed a study of 171 other nonobligate protein-protein interfaces that includes an original principal component analysis of the quantifiable aspects of these interfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunoglobulin G (IgG) is central in mediating host defense due to its ability to target and eliminate invading pathogens. The fragment antigen binding (Fab) regions are responsible for antigen recognition; however the effector responses are encoded on the Fc region of IgG. IgG Fc displays considerable glycan heterogeneity, accounting for its complex effector functions of inflammation, modulation and immune suppression. Intravenous immunoglobulin G (IVIG) is pooled serum IgG from multiple donors and is used to treat individuals with autoimmune and inflammatory disorders such as rheumatoid arthritis and Kawasaki’s disease, respectively. It contains all the subtypes of IgG (IgG1-4) and over 120 glycovariants due to variation of an Asparagine 297-linked glycan on the Fc. The species identified as the activating component of IVIG is sialylated IgG Fc. Comparisons of wild type Fc and sialylated Fc X-ray crystal structures suggests that sialylation causes an increase in conformational flexibility, which may be important for its anti-inflammatory properties.

Although glycan modifications can promote the anti-inflammatory properties of the Fc, there are amino acid substitutions that cause Fcs to initiate an enhanced immune response. Mutations in the Fc can cause up to a 100-fold increase in binding affinity to activating Fc gamma receptors located on immune cells, and have been shown to enhance antibody dependent cell-mediated cytotoxicity. This is important in developing therapeutic antibodies against cancer and infectious diseases. Structural studies of mutant Fcs in complex with activating receptors gave insight into new protein-protein interactions that lead to an enhanced binding affinity.

Together these studies show how dynamic and diverse the Fc region is and how both protein and carbohydrate modifications can alter structure, leading to IgG Fc’s switch from a pro-inflammatory to an anti-inflammatory protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure-based sequence motif of the distant proteins in evolution, protein tyrosine phosphatases (PTP) I and II superfamilies, as an example, has been defined by the structural comparison, structure-based sequence alignment and analyses on substitut