996 resultados para Immobilized cells


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glucose monitoring in vivo is a crucial issue for gaining new understanding of diabetes. Glucose binding protein (GBP) fused to two fluorescent indicator proteins (FLIP) was used in the present study such as FLIP-glu- 3.2 mM. Recombinant Escherichia coli whole-cells containing genetically encoded nanosensors as well as cell-free extracts were immobilized either on inner epidermis of onion bulb scale or on 96-well microtiter plates in the presence of glutaraldehyde. Glucose monitoring was carried out by Förster Resonance Energy Transfer (FRET) analysis due the cyano and yellow fluorescent proteins (ECFP and EYFP) immobilized in both these supports. The recovery of these immobilized FLIP nanosensors compared with the free whole-cells and cell-free extract was in the range of 50–90%. Moreover, the data revealed that these FLIP nanosensors can be immobilized in such solid supports with retention of their biological activity. Glucose assay was devised by FRET analysis by using these nanosensors in real samples which detected glucose in the linear range of 0–24 mM with a limit of detection of 0.11 mM glucose. On the other hand, storage and operational stability studies revealed that they are very stable and can be re-used several times (i.e. at least 20 times) without any significant loss of FRET signal. To author's knowledge, this is the first report on the use of such immobilization supports for whole-cells and cell-free extract containing FLIP nanosensor for glucose assay. On the other hand, this is a novel and cheap high throughput method for glucose assay.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Contamination with arsenic is a recurring problem in both industrialized and developing countries. Drinking water supplies for large populations can have concentrations much higher than the permissible levels (for most European countries and the United States, 10 μg As per L; elsewhere, 50 μg As per L). Arsenic analysis requires high-end instruments, which are largely unavailable in developing countries. Bioassays based on genetically engineered bacteria have been proposed as suitable alternatives but such tests would profit from better standardization and direct incorporation into sensing devices. The goal of this work was to develop and test microfluidic devices in which bacterial bioreporters could be embedded, exposed and reporter signals detected, as a further step towards a complete miniaturized bacterial biosensor. The signal element in the biosensor is a nonpathogenic laboratory strain of Escherichia coli, which produces a variant of the green fluorescent protein after contact to arsenite and arsenate. E. coli bioreporter cells were encapsulated in agarose beads and incorporated into a microfluidic device where they were captured in 500 × 500 μm(2) cages and exposed to aqueous samples containing arsenic. Cell-beads frozen at -20 °C in the microfluidic chip retained inducibility for up to a month and arsenic samples with 10 or 50 μg L(-1) could be reproducibly discriminated from the blank. In the 0-50 μg L(-1) range and with an exposure time of 200 minutes, the rate of signal increase was linearly proportional to the arsenic concentration. The time needed to reliably and reproducibly detect a concentration of 50 μg L(-1) was 75-120 minutes, and 120-180 minutes for a concentration of 10 μg L(-1).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

By applying high pressure freezing and freeze-substitution, we observed large inclusions of homogeneous appearance in the front of locomoting Walker carcinosarcoma cells that have not been described earlier. Live cell imaging revealed that these inclusions were poor in lipids and nucleic acids but had a high lysine (and hence protein) content. Usually one such structure 2-5 mum in size was present at the front of motile Walker cells, predominantly in the immediate vicinity of newly forming blebs. By correlating the lysine-rich areas in fixed and embedded cells with electron microscopic pictures, inclusions could be assigned to confined, faintly stained cytoplasmic areas that lacked a surrounding membrane; they were therefore called pseudovacuoles. After high-pressure freezing and freeze substitution, pseudovacuoles appeared to be filled with 20 nm large electron-transparent patches surrounded by 12 and 15 nm large particles. The heat shock protein Hsp90 was identified by peptide sequencing as a major fluorescent band on SDS-PAGE of lysine-labelled Walker cell extracts. By immunofluorescence, Hsp90 was found to be enriched in pseudovacuoles. Colocalization of the lysine with a potassium-specific dye in living cells revealed that pseudovacuoles act as K+ stores in the vicinity of forming blebs. We propose that pseudovacuoles might support blebbing by locally regulating the intracellular hydrostatic pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bioethanol industry expects a huge expansion and new technologies are being implemented with the aim of optimizing the fermentation process. The behavior of cells of Saccharomyces cerevisiae immobilized in PVA-LentiKats, during the production of bioethanol in two reactor systems, was studied. The entrapped cell in LentiKats lenses showed a different profile using stirred tank reactor (STR) and packed column reactor (PCR). Low free cells accumulation in the medium was observed for the STR after 72 h of fermentation. On the other hand, no free cells accumulation was observed, probably due to the absence of mechanical agitation in PCR configuration. Better fermentation results were obtained working with STR (final cellular concentration = 13 g.L-1, Pf = 28 g.L-1, Qp = 1.17 g.L-1.h-1,and Yp/s = 0.3 g.g-1) in comparison to PCR (final cellular concentration = 11.4 g.L-1, Pf = 20 g.L-1, Qp = 0.83 g.L-1.h-1,and Yp/s = 0.25 g.g-1). Such results are probably due to the mechanical agitation of the medium provided by STR configuration, which permitted a better heat and mass transference.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immune deviation of cytolytic T cell function, induced by type 2 cytokines like IL-4, is an attractive concept to explain failure of the immune system in some diseases. However, this concept is challenged by previous conflicting results on whether type 2 cytokine-producing CD8(+) T cells are cytolytic. Therefore, we have analyzed the relationship between cytolytic activity and cytokine production among large numbers of primary CD8(+) T cell clones. Single murine CD8(+) T cells of naive phenotype were activated at high efficiency with immobilized Abs to CD3, CD8, and CD11a in the presence of IL-2 (neutral conditions) or IL-2, IL-4, and anti-IFN-gamma Ab (type 2-polarizing conditions) for 8-9 days. Under neutral conditions, most clones produced IFN-gamma without IL-4 and were cytolytic. Under type 2-polarizing conditions, most clones produced IFN-gamma and IL-4 but displayed variable cytolytic activity and CD8 expression. Separation on the basis of surface CD8 levels revealed that, compared with CD8(high) cells from the same cultures, CD8(low) cells were poorly cytolytic and expressed low levels of perforin mRNA and protein and granzyme A, B, and C mRNA. A similar, smaller population of noncytolytic CD8(low) cells was identified among CD8(low) T cells activated in mixed lymphocyte reaction with IL-4. Variable efficiency of generation of the noncytolytic cells may account for the differing results of earlier studies. We conclude that IL-4 promotes the development of a noncytolytic CD8(low) T cell phenotype that might be important in tumor- or pathogen-induced immune deviation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation presented to obtain a Master degree in Biotechnology at the Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adhesion to host cells is an initial and important step in Acinetobacter baumannii pathogenesis. However, there is relatively little information on the mechanisms by which A. baumannii binds to and interacts with host cells. Adherence to extracellular matrix proteins, such as fibronectin, affords pathogens with a mechanism to invade epithelial cells. Here, we found that A. baumannii adheres more avidly to immobilized fibronectin than to control protein. Free fibronectin used as a competitor resulted in dose-dependent decreased binding of A. baumannii to fibronectin. Three outer membrane preparations (OMPs) were identified as fibronectin binding proteins (FBPs): OMPA, TonB-dependent copper receptor, and 34 kDa OMP. Moreover, we demonstrated that fibronectin inhibition and neutralization by specific antibody prevented significantly the adhesion of A. baumannii to human lung epithelial cells (A549 cells). Similarly, A. baumannii OMPA neutralization by specific antibody decreased significantly the adhesion of A. baumannii to A549 cells. These data indicate that FBPs are key adhesins that mediate binding of A. baumannii to human lung epithelial cells through interaction with fibronectin on the surface of these host cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To test the ability of two preparations of FGF2-saporin, either FGF2 chemically conjugated to saporin (FGF2-SAP) or genetically engineered FGF2-saporin (rFGF2-SAP) to inhibit the growth of bovine epithelial lens (BEL) cells in vitro when in solution and when immobilized on heparin surface-modified (HSM) polymethylmethacrylate (PMMA) intraocular lenses (IOLs). METHOD: Bovine epithelial lens cells were incubated with various concentrations FGF2-saporin for as long as 4 days. The number of surviving cells was determined by counting the number of nuclei. Because FGF2 binds to heparin, FGF2-saporin was incubated with HSM PMMA IOLs; excess toxin was washed off, and the BEL cells were grown on the FGF2-saporin-treated IOLs (HSM and non-HSM) for 4 days. Cell density was determined by image analysis. RESULTS: Both FGF2-SAP and rFGF2-SAP were highly cytotoxic (nM range), with rFGF2-SAP 10 times less active than FGF2-SAP. FGF2-saporin bound to the surface of HSM IOLs and eluted by 2M NaCl retained its activity. Toxin bound to HSM IOLs killed more than 90% of the BEL cells placed on the IOL surface within 4 days. The ability of FGF2-saporin to prevent the growth of cells on the IOL surface was strictly dependent on the presence of heparin on the IOL. CONCLUSIONS: FGF2-saporin is bound to HSM PMMA IOLs and prevents the growth of epithelial cells on the surface of the lens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Staphylococcus aureus invasion of mammalian cells, including epithelial, endothelial, and fibroblastic cells, critically depends on fibronectin bridging between S. aureus fibronectin-binding proteins (FnBPs) and the host fibronectin receptor integrin alpha(5)beta(1) (B. Sinha et al., Cell. Microbiol. 1:101-117, 1999). However, it is unknown whether this mechanism is sufficient for S. aureus invasion. To address this question, various S. aureus adhesins (FnBPA, FnBPB, and clumping factor [ClfA]) were expressed in Staphylococcus carnosus and Lactococcus lactis subsp. cremoris. Both noninvasive gram-positive microorganisms are genetically distinct from S. aureus, lack any known S. aureus surface protein, and do not bind fibronectin. Transformants of S. carnosus and L. lactis harboring plasmids coding for various S. aureus surface proteins (FnBPA, FnBPB, and ClfA) functionally expressed adhesins (as determined by bacterial clumping in plasma, specific latex agglutination, Western ligand blotting, and binding to immobilized and soluble fibronectin). FnBPA or FnBPB but not of ClfA conferred invasiveness to S. carnosus and L. lactis. Invasion of 293 cells by transformants was comparable to that of strongly invasive S. aureus strain Cowan 1. Binding of soluble and immobilized fibronectin paralleled invasiveness, demonstrating that the amount of accessible surface FnBPs is rate limiting. Thus, S. aureus FnBPs confer invasiveness to noninvasive, apathogenic gram-positive cocci. Furthermore, FnBP-coated polystyrene beads were internalized by 293 cells, demonstrating that FnBPs are sufficient for invasion of host cells without the need for (S. aureus-specific) coreceptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study is about the Pseudomonas sp. BTMS-51 isolated from the marine sediments of Cochin Coast. In the present study, it is concluded that marine bacteria are ideal candidates for immobilization using either Ca-alginate entrapment or physical adsorption on to synthetic inert supports and the process of immobilization does not negatively influence them. Thus, Ca-alginate entrapment of the bacteria was found to be well suited for reuse of the biomass and extended operational stability during continuous operation. Adherence of the bacterium to inertsupports was observed to be strong and it imparted minimal stress on the immobilized bacterium and allowed detachment and relocation on the supports which enabled the formation of a dynamic equilibrium maintaining a stable cell loading. This is particularly desirable in the industry for extended operational stability and maintenance of consistently higher outputs. Marine Pseudomonas sp. BTMS-51 is ideal for industrial production of extra cellular L-glutaminase and immobilization on to synthetic inert support such as polyurethane foam could be an efficient technique, employing packed bed reactor for continuous production of the enzyme. Temperature and glutamine concentration had significant effects on enzyme production by cells immobilized on polyurethane foam (PUF).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of C-type lectin receptor 2 (CLEC-2) on platelets with Podoplanin on lymphatic endothelial cells initiates platelet signaling events that are necessary for prevention of blood-lymph mixing during development. In the present study, we show that CLEC-2 signaling via Src family and Syk tyrosine kinases promotes platelet adhesion to primary mouse lymphatic endothelial cells at low shear. Using supported lipid bilayers containing mobile Podoplanin, we further show that activation of Src and Syk in platelets promotes clustering of CLEC-2 and Podoplanin. Clusters of CLEC-2-bound Podoplanin migrate rapidly to the center of the platelet to form a single structure. Fluorescence lifetime imaging demonstrates that molecules within these clusters are within 10 nm of one another and that the clusters are disrupted by inhibition of Src and Syk family kinases. CLEC-2 clusters are also seen in platelets adhered to immobilized Podoplanin using direct stochastic optical reconstruction microscopy. These findings provide mechanistic insight by which CLEC-2 signaling promotes adhesion to Podoplanin and regulation of Podoplanin signaling, thereby contributing to lymphatic vasculature development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background/Objective: Renal ischemia-hypoxia is a leading cause of acute kidney injury (AKI). Ischemia causes extracellular matrix breakdown of the tubular basement membrane. Endostatin (ES) is the C-terminal fragment of collagen XVIII generated by proteolytic cleavage. Recent studies have demonstrated that ES expression is upregulated in ischemic kidneys. The present study aimed to characterize ES from ischemic kidneys. Methods: Ischemic renal failure was induced via 45 min of occlusion of the left renal artery and vein. After the ischemic period, blood was collected. Kidneys were harvested and used for immunohistochemical testing and protein extraction. Three-step purification was used. Soluble and immobilized purified ES were tested in cell viability and adhesion assays. Results: The soluble KES28kDa inhibited endothelial cell proliferation: 25 versus 12.5 mu g (p < 0.05); 12.5 versus 3.15 mu g (p < 0.05). Immobilization of KES28kDa supports endothelial cell survival over the control p = 0.021). Human umbilical vein endothelial cells plated on immobilized KES28kDa showed an increase in membrane ruffles and stress fibers. Conclusion: These data demonstrate the local synthesis of a 28-kDa ES-related fragment following AKI and suggest its role in endothelium survival. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transplantation of pancreatic islets isolated from organ donors constitutes a promising alternative treatment for type 1 diabetes, however, it is severely limited by the shortage of organ donors. Ex vivo islet cell cultures appear as an attractive but still elusive approach for curing type 1 diabetes. It has recently been shown that, even in the absence of fibrotic over-growth, several factors, such as insufficient nutrition of the islet core, represent a major barrier for long-term survival of islets grafts. The use of immobilized dispersed cells may contribute to solve this problem due to conceivably easier nutritional and oxygen support to the cells. Therefore, we set out to establish an immobilization method for primary cultures of human pancreatic cells by adsorption onto microcarriers (MCs). Dispersed human islets cells were seeded onto Cytodex1 microcarriers and cultured in bioreactors for up to eight days. The cell number increased and islet cells maintained their insulin secretion levels throughout the time period studied. Moreover, the cells also presented a tendency to cluster upon five days culturing. Therefore, this procedure represents a useful tool for controlled studies on islet cells physiology and, also, for biotechnological applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue engineering is an important branch of regenerative medicine that uses cells, materials (scaffolds), and suitable biochemical and physicochemical factors to improve or replace specific biological functions. In particular, the control of cell behavior (namely, of cell adhesion, proliferation and differentiation) is a key aspect for the design of successful therapeutical approaches. In this study, poly(lactic-co-glycolic acid) (PLGA) fiber mats were prepared using the electrospinning technology (the fiber diameters were in the micrometer range). Furthermore, the electrospun fiber mats thus formed were functionalized using the layer-by- layer (LbL) technique with chitosan and alginate (natural and biodegradable polyelectrolytes having opposite charges) as a mean for the immobilization of pDNA/dendrimer complexes. The polyelectrolyte multilayer deposition was confirmed by fluorescence spectroscopy using fluorescent-labeled polyelectrolytes. The electrospun fiber mats coated with chitosan and alginate were successfully loaded with complexes of pDNA and poly(amidoamine) (PAMAM) dendrimers (generation 5) and were able of releasing them in a controlled manner along time. In addition, these mats supported the adhesion and proliferation of NIH 3T3 cells and of human mesenchymal stem cells (hMSCs) in their surface. Transfection experiments using a pDNA encoding for luciferase showed the ability of the electrospun fiber mats to efficiently serve as gene delivery systems. When a pDNA encoding for bone morphogenetic protein-2 (BMP-2) was used, the osteoblastic differentiation of hMSCs cultured on the surface of the mats was promoted. Taken together, the results revealed that merging the electrospinning technique with the LbL technique, can be a suitable methodology for the creation of biological active matrices for bone tissue engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different culture conditions for Protaminobacter rubrum and enzymatic reaction parameters were evaluated with the goal of improving isomaltulose production. P. rubrum was grown in a medium with 1% (w/v) cane molasses and 0.5% yeast extract and achieved a maximum cell yield Y(x/s) of 0.295 g of cells/g sucrose and a specific growth rate (mu) of 0.192 h(-1). The immobilization of P. rubrum cells was carried out with calcium alginate, glutaraldehyde and polyethyleneimine. Stabile immobilized cell pellets were obtained and used 24 times in batch processes. Enzymatic conversion was carried out at different sucrose concentrations and in pH 6 medium with 70% (w/v) sucrose at 30 degrees C an isomaltulose yield of 89-94% (w/v) was obtained. The specific activity of the P. rubrum immobilized pellets in calcium alginate at 30 degrees C ranged from 1.6 to 4.0 g isomaltulose g(-1) pellet h(-1), respectively with 70% and 65% sucrose solution, while in lower sucrose concentration had higher specific activities presumably due to substrate inhibition of the isomaltulose synthase in higher sucrose concentrations. (C) 2009 Elsevier Ltd. All rights reserved.