264 resultados para Imidazole.
Resumo:
A mild, convenient, and effective strategy is developed for the synthesis of alkynyl selenides from alkynyl bromides and respective diselenides using Cul/imidazole as a novel catalyst system with Mg as additive. The Procedure affords the title compounds in moderate to good yield (51-89%). The main advantages of the protocol include the use of inexpensive copper catalyst, a novel Cu(I)/imidazole combination, and good yield of the products. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Molecular orbital calculations were carried out on a set of 28 non-imidazole H(3) antihistamine compounds using the Hartree-Fock method in order to investigate the possible relationships between electronic structural properties and binding affinity for H3 receptors (pK(i)). It was observed that the frontier effective-for-reaction molecular orbital (FERMO) energies were better correlated with pK(i) values than highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy values. Exploratory data analysis through hierarchical cluster (HCA) and principal component analysis (PCA) showed a separation of the compounds in two sets, one grouping the molecules with high pK(i) values, the other gathering low pK(i) value compounds. This separation was obtained with the use of the following descriptors: FERMO energies (epsilon(FERMO)), charges derived from the electrostatic potential on the nitrogen atom (N(1)), electronic density indexes for FERMO on the N(1) atom (Sigma((FERMO))c(i)(2)). and electrophilicity (omega`). These electronic descriptors were used to construct a quantitative structure-activity relationship (QSAR) model through the partial least-squares (PLS) method with three principal components. This model generated Q(2) = 0.88 and R(2) = 0.927 values obtained from a training set and external validation of 23 and 5 molecules, respectively. After the analysis of the PLS regression equation and the values for the selected electronic descriptors, it is suggested that high values of FERMO energies and of Sigma((FERMO))c(i)(2), together with low values of electrophilicity and pronounced negative charges on N(1) appear as desirable properties for the conception of new molecules which might have high binding affinity. 2010 Elsevier Inc. All rights reserved.
Resumo:
In this work we have made use of the study of the interaction between Fe(TDCPP)(+) and the axial ligands OH- and imidazole in order to help characterize the heterogenized catalysts Fe(TDCPP)SG and Fe(TDCPP)IPG through UV-VIS and EPR spectroscopies and thus, better understand their different catalytic activity in the oxidation of cyclohexane by PhIO. We have found out that in Fe(TDCPP)SG (containing 1.2 X 10(-6) mol Fe(TDCPP)(+)/g of support), the FeP bis-coordinates to silica gel through Fe-O coordination and it is high-spin (FeP)-P-III species. In Fe(TDCPP)IPG 1 (containing 1.1 X 10(-6) mol Fe(TDCPP)(+) and 2.2 X 10(-4) mol imidazole/g of support), the FeP is bis-ligated to imidazole propyl gel through Fe-imidazole coordination and using NO as a paramagnetic probe, we present evidence that Fe(TDCPP)(+) is present as a mixture of low-spin (FeP)-P-III and (FeP)-P-II species. This catalyst led to a relative low yield of cyclohexanol (25%) because the bis-coordination of the (FeP)-P-III to the support partially blocks the reaction between Fe(TDCPP)(+) and PhIO, thus leading to the formation of only a small amount of the active species Fe-IV(OP+, while the (FeP)-P-II species do not react with the oxygen donor. Increasing the amount of Fe(TDCPP)(+) and decreasing the amount of imidazole in the support led to the obtention of high-spin (FeP)-P-III EPR signals in the spectra of Fe(TDCPP)IPG 5 (containing 4.4 X 10(-6) mol Fe(TDCPP)(+) and 2.2 X 10(-5) mol imidazole/g of IPG), together with low-spin (FeP)-P-III species. This latter catalyst led to better cyclohexanol yields (67%) than Fe(TDCPP)IPG 1. Fe(TDCPP)IPG 5 was further used in a study of the optimization of its catalytic activity and in recycling experiments in the optimized conditions. Recycling oxidation reactions of Fe(TDCPP)IPG 5 led to a total turnover number of 201 and total cyclohexanol yield of 201%, which could not be attained with Fe(TDCPP)Cl in homogeneous solution (turnover = 96) due to the difficulty in recovering and reusing it.
Resumo:
In this work, the catalytic intermediates for Fe(TPP)(+), Fe(TDCPP)(+), Fe(TFPP)(+), Mn(TPP)(+) and Mn(TDCPP)(+) supported on imidazole propyl gel with PhIO were studied by UV-Vis spectrophotometry. For Fe(TPP)+ and Fe(TFPP)+ the study was also monitored by EPR spectroscopy. The active catalytic intermediate observed for FeP-IPG is the ore-iron (IV) porphyrin pi cation radical Fe-IV(O)P.+, which is evidenced by a decrease in the intensity of the Sorer band. The total re-establishment of the initial Soret band intensity for Fe(TDCPP)IPG and Fe(TFPP)IPG at the end of the reaction shows that they were completely recovered, There are advantages in following the reactions of PNO with unsubstituted Fe(TPP)(+) and Mn(TPP)(+) on IPG by UV-Vis, since they were slower and allowed to 'see' the intermediate species without spectral interference from the recovered catalyst, since they are only partially recovered. With Fe(TPP)IPG, a band at 580 nm was detected at the beginning of the reaction, indicating the possible formation of a Fe-OIPh intermediate. Supporting Mn(TPP)(+) on IPG leads to a shift of band V from 478 nm to 488 nm. In the reaction of MnP-IPG with PhIO, we observed the disappearance of the band in 488 nm and the appearance of a band in 412 nm, which corresponds to the active catalytic intermediate Mn-V(O)P as the main component, as is expected for a more efficient system. The recovery of supported catalysts observed in these experiments was further proved with the possibility of their successive recyclings in cyclohexane oxidation reactions by PhIO.
Resumo:
The cyanate-bridged cyclopalladated compound [Pd(C(2),N-dmba)(mu-NCO)](2) (dmba=N,N-dimethylbenzylamine) reacts in acetone with pyrazole (pz), 3,5-dimethylpyrazole (dmpz), imidazole (imz) and 2-methylimidazole (mimz) to give [Pd(2)(C(2),N-dmba)(2)(mu-NCO)(mu-pz)] (1), [Pd(2)(C(2),N-dmba)(2)(mu-NCO)(mu-dmpz)] (2), [Pd(C(2),N-dmba)(NCO)(imz)] (3) and [Pd(C(2),N-dmba)(NCO)(mimz)] (4), respectively. The compounds were characterized by elemental analysis, IR spectroscopy and TG. The thermal decomposition of the compounds occurs in three consecutive steps and the final decomposition products were identified as Pd(0) by X-ray powder diffraction. The thermal stability order of the complexes is 2 > 3 > 1 > 4.
Resumo:
The stems of Pilocarpus grandiflorus have afforded the new imidazole alkaloid 4,6-dehydro-1,2,4,5-tetrahydro-2,5-dioxopilocarpine in addition to the 17 known compounds germanicol, β-amiryn, ocotillone, stigmast-4-en-3-one, 3β-hydroxy-stigmast-5-en-7-one, 6β-hydroxy-stigmast-4-en-3-one, β-sitosterol, scopoletin, 3-(1′,1′-dimethylallyl)-scopoletin, elisin, dictamine, 4-methoxy-2-quinolone, platydesmine, syringaresinol, syringaldehyde, syringic acid and vanillic acid. Their structures were elucidated on the basis of chemical and spectroscopic evidence. The phenolic compounds vanillic acid and syringaldehyde and the furoquinoline alkaloid platydesmine exhibited antifungal activity against Leucoagaricus gongylophorus, the symbiotic fungus of leaf-cutting ants (Atta sexdens rubropilosa). © 2005 Verlag der Zeitschrift für Naturforschung.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This Master thesis presents the results obtained in the curricular traineeship, carried out within the laboratories of the Department of Chemistry of the University of Bergen, during the Erasmus period, and within the Department of Industrial Chemistry of the University of Bologna. The project followed in Bergen concerned the synthesis of key intermediates used for the functionalization of the backbone of imidazole, using N,N'- diiodo-5,5-dimethylhydantoin (“DIH”) as an iodinating agent, and employing an innovative kind of chemical reactor: the “Multijet Oscillating Disc Millireactor” (MJOD Reactor). Afterwards, the work performed in Bologna consisted in verifying the stability in solution of the above mentioned N,N'-diiodo-5,5-dimethylhydantoin utilising spectrophotometric techniques and High Performance Liquid Chromatography analyses (HPLC).
Resumo:
Using explicitly-correlated coupled-cluster theory with single and double excitations, the intermolecular distances and interaction energies of the T-shaped imidazole⋯benzene and pyrrole⋯⋯benzene complexes have been computed in a large augmented correlation-consistent quadruple-zeta basis set, adding also corrections for connected triple excitations and remaining basis-set-superposition errors. The results of these computations are used to assess other methods such as Møller–Plesset perturbation theory (MP2), spin-component-scaled MP2 theory, dispersion-weighted MP2 theory, interference-corrected explicitly-correlated MP2 theory, dispersion-corrected double-hybrid density-functional theory (DFT), DFT-based symmetry-adapted perturbation theory, the random-phase approximation, explicitly-correlated ring-coupled-cluster-doubles theory, and double-hybrid DFT with a correlation energy computed in the random-phase approximation.
Resumo:
Polyamides containing N-methylimidazole (Im) and N-methylpyrrole (Py) amino acids can be combined in antiparallel side-by-side dimeric complexes for sequence-specific recognition in the minor groove of DNA. Six polyamides containing three to eight rings bind DNA sites 5-10 bp in length, respectively. Quantitative DNase I footprint titration experiments demonstrate that affinity maximizes and is similar at ring sizes of five, six, and seven. Sequence specificity decreases as the length of the polyamides increases beyond five rings. These results provide useful guidelines for the design of new polyamides that bind longer DNA sites with enhanced affinity and specificity.