996 resultados para Image sensor
Resumo:
The standard data fusion methods may not be satisfactory to merge a high-resolution panchromatic image and a low-resolution multispectral image because they can distort the spectral characteristics of the multispectral data. The authors developed a technique, based on multiresolution wavelet decomposition, for the merging and data fusion of such images. The method presented consists of adding the wavelet coefficients of the high-resolution image to the multispectral (low-resolution) data. They have studied several possibilities concluding that the method which produces the best results consists in adding the high order coefficients of the wavelet transform of the panchromatic image to the intensity component (defined as L=(R+G+B)/3) of the multispectral image. The method is, thus, an improvement on standard intensity-hue-saturation (IHS or LHS) mergers. They used the ¿a trous¿ algorithm which allows the use of a dyadic wavelet to merge nondyadic data in a simple and efficient scheme. They used the method to merge SPOT and LANDSATTM images. The technique presented is clearly better than the IHS and LHS mergers in preserving both spectral and spatial information.
Resumo:
In this paper, the sensor of an optical mouse is presented as a counterfeit coin detector applied to the two-Euro case. The detection process is based on the short distance image acquisition capabilities of the optical mouse sensor where partial images of the coin under analysis are compared with some partial reference coin images for matching. Results show that, using only the vision sense, the counterfeit acceptance and rejection rates are very similar to those of a trained user and better than those of an untrained user.
Resumo:
Aquest projecte s’emmarca dins de l’àmbit de la visió per computador, concretament en la utilització de dades de profunditat obtingudes a través d’un emissor i sensor de llum infraroja.El propòsit principal d’aquest projecte és mostrar com adaptar aquestes tecnologies, a l’abast de qualsevol particular, de forma que un usuari durant la pràctica d’una activitat esportiva concreta, rebi informació visual continua dels moviments i gestos incorrectes que està realitzant, en base a uns paràmetres prèviament establerts.L’objectiu d’aquest projecte consisteix en fer una lectura constant en temps real d’una persona practicant una selecció de diverses activitats esportives estàtiques utilitzant un sensor Kinect. A través de les dades obtingudes pel sensor Kinect i utilitzant les llibreries de “skeleton traking” proporcionades per Microsoft s’haurà d’interpretar les dades posturals obtingudes per cada tipus d’esport i indicar visualment i d’una manera intuïtiva els errors que està cometent en temps real, de manera que es vegi clarament a quina part del seu cos realitza un moviment incorrecte per tal de poder corregir-lo ràpidament. El entorn de desenvolupament que s’utilitza per desenvolupar aquesta aplicació es Microsoft Viusal Studio 2010.El llenguatge amb el qual es treballarà sobre Microsoft Visual Studio 2010 és C#
Resumo:
El reconeixement dels gestos de la mà (HGR, Hand Gesture Recognition) és actualment un camp important de recerca degut a la varietat de situacions en les quals és necessari comunicar-se mitjançant signes, com pot ser la comunicació entre persones que utilitzen la llengua de signes i les que no. En aquest projecte es presenta un mètode de reconeixement de gestos de la mà a temps real utilitzant el sensor Kinect per Microsoft Xbox, implementat en un entorn Linux (Ubuntu) amb llenguatge de programació Python i utilitzant la llibreria de visió artifical OpenCV per a processar les dades sobre un ordinador portàtil convencional. Gràcies a la capacitat del sensor Kinect de capturar dades de profunditat d’una escena es poden determinar les posicions i trajectòries dels objectes en 3 dimensions, el que implica poder realitzar una anàlisi complerta a temps real d’una imatge o d’una seqüencia d’imatges. El procediment de reconeixement que es planteja es basa en la segmentació de la imatge per poder treballar únicament amb la mà, en la detecció dels contorns, per després obtenir l’envolupant convexa i els defectes convexos, que finalment han de servir per determinar el nombre de dits i concloure en la interpretació del gest; el resultat final és la transcripció del seu significat en una finestra que serveix d’interfície amb l’interlocutor. L’aplicació permet reconèixer els números del 0 al 5, ja que s’analitza únicament una mà, alguns gestos populars i algunes de les lletres de l’alfabet dactilològic de la llengua de signes catalana. El projecte és doncs, la porta d’entrada al camp del reconeixement de gestos i la base d’un futur sistema de reconeixement de la llengua de signes capaç de transcriure tant els signes dinàmics com l’alfabet dactilològic.
Resumo:
In this work, image based estimation methods, also known as direct methods, are studied which avoid feature extraction and matching completely. Cost functions use raw pixels as measurements and the goal is to produce precise 3D pose and structure estimates. The cost functions presented minimize the sensor error, because measurements are not transformed or modified. In photometric camera pose estimation, 3D rotation and translation parameters are estimated by minimizing a sequence of image based cost functions, which are non-linear due to perspective projection and lens distortion. In image based structure refinement, on the other hand, 3D structure is refined using a number of additional views and an image based cost metric. Image based estimation methods are particularly useful in conditions where the Lambertian assumption holds, and the 3D points have constant color despite viewing angle. The goal is to improve image based estimation methods, and to produce computationally efficient methods which can be accomodated into real-time applications. The developed image-based 3D pose and structure estimation methods are finally demonstrated in practise in indoor 3D reconstruction use, and in a live augmented reality application.
Resumo:
Mosaics have been commonly used as visual maps for undersea exploration and navigation. The position and orientation of an underwater vehicle can be calculated by integrating the apparent motion of the images which form the mosaic. A feature-based mosaicking method is proposed in this paper. The creation of the mosaic is accomplished in four stages: feature selection and matching, detection of points describing the dominant motion, homography computation and mosaic construction. In this work we demonstrate that the use of color and textures as discriminative properties of the image can improve, to a large extent, the accuracy of the constructed mosaic. The system is able to provide 3D metric information concerning the vehicle motion using the knowledge of the intrinsic parameters of the camera while integrating the measurements of an ultrasonic sensor. The experimental results of real images have been tested on the GARBI underwater vehicle
Resumo:
Omnidirectional cameras offer a much wider field of view than the perspective ones and alleviate the problems due to occlusions. However, both types of cameras suffer from the lack of depth perception. A practical method for obtaining depth in computer vision is to project a known structured light pattern on the scene avoiding the problems and costs involved by stereo vision. This paper is focused on the idea of combining omnidirectional vision and structured light with the aim to provide 3D information about the scene. The resulting sensor is formed by a single catadioptric camera and an omnidirectional light projector. It is also discussed how this sensor can be used in robot navigation applications
Resumo:
We present a computer vision system that associates omnidirectional vision with structured light with the aim of obtaining depth information for a 360 degrees field of view. The approach proposed in this article combines an omnidirectional camera with a panoramic laser projector. The article shows how the sensor is modelled and its accuracy is proved by means of experimental results. The proposed sensor provides useful information for robot navigation applications, pipe inspection, 3D scene modelling etc
Resumo:
The treatment of wastewaters contaminated with oil is of great practical interest and it is fundamental in environmental issues. A relevant process, which has been studied on continuous treatment of contaminated water with oil, is the equipment denominated MDIF® (a mixer-settler based on phase inversion). An important variable during the operation of MDIF® is the water-solvent interface level in the separation section. The control of this level is essential both to avoid the dragging of the solvent during the water removal and improve the extraction efficiency of the oil by the solvent. The measurement of oil-water interface level (in line) is still a hard task. There are few sensors able to measure oil-water interface level in a reliable way. In the case of lab scale systems, there are no interface sensors with compatible dimensions. The objective of this work was to implement a level control system to the organic solvent/water interface level on the equipment MDIF®. The detection of the interface level is based on the acquisition and treatment of images obtained dynamically through a standard camera (webcam). The control strategy was developed to operate in feedback mode, where the level measure obtained by image detection is compared to the desired level and an action is taken on a control valve according to an implemented PID law. A control and data acquisition program was developed in Fortran to accomplish the following tasks: image acquisition; water-solvent interface identification; to perform decisions and send control signals; and to record data in files. Some experimental runs in open-loop were carried out using the MDIF® and random pulse disturbances were applied on the input variable (water outlet flow). The responses of interface level permitted the process identification by transfer models. From these models, the parameters for a PID controller were tuned by direct synthesis and tests in closed-loop were performed. Preliminary results for the feedback loop demonstrated that the sensor and the control strategy developed in this work were suitable for the control of organic solvent-water interface level
Resumo:
Objectives: (1) To evaluate the intraobserver agreement related to image interpretation and (2) to compare the accuracy of 100%, 200% and 400% zoomed digital images in the detection of simulated periodontal bone defects.Methods: Periodontal bone defects were created in 60 pig hemi-mandibles with slow-speed burs 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm and 3.0 mm in diameter. 180 standardized digital radiographs were made using Schick sensor and evaluated at 100%, 200% and 400% zooming. The intraobserver agreement was estimated by Kappa statistic (kappa). For the evaluation of diagnostic accuracy receiver operating characteristic (ROC) analysis was performed followed by chi-square test to compare the areas under ROC curves according to each level of zooming.Results: For 100%, 200% and 400% zooming the intraobserver agreement was moderate (kappa = 0.48, kappa = 0.54 and kappa = 0.43, respectively) and there were similar performances in the discrimination capacity, with ROC areas of 0.8611 (95% CI: 0.7660-0.9562), 0.8600 (95% CI: 0.7659-0.9540), and 0.8368 (95% CI: 0.7346-0.9390), respectively, with no statistical significant differences (chi(2)-test; P = 0.8440).Conclusions: A moderate intraobserver agreement was observed in the classification of periodontal bone defects and the 100%, 200% and 400% zoomed digital images presented similar performances in the detection of periodontal bone defects.
Resumo:
The Paraguay River is the main tributary of the Paraná River and has an extension of 1.693 km in Brazilian territory. The navigability conditions are very important for the regional economy because most of the central-west Brazilian agricultural and mineral production is transported by the Paraguay waterway. Increased sedimentation along the channel requires continuous dredging to waterway maintenance. Systematic bathymetric surveys are periodically carried out in order to check depth condition along the channel using echo-sounding devices. In this paper, digital image processing and geostatistical analysis methods were used to analyze the applicability of the ASTER sensor to estimate channel depths in a segment of the upper Paraguay River. The results were compared with field data in order to choose the band with better adjustment and to evaluate the standard deviation. Comparing the VNIR bands, the best fit was presented by the red wavelength (band 2; 0,63 - 0,69 μm), showing a good representation of the channel depths shallow than 1,7 m. Applying geostatistical methods, the model accuracy was enhanced from 43 cm to 36 cm and undesired components were slacked. It was concluded that the digital number of band 2, converted to bathymetry information allows a good estimation of river depths and channel morphology.
Resumo:
Purpose: This study was performed to compare the inverted digital images and film-based images of dry pig mandibles to measure the periodontal bone defect depth. Materials and Methods: Forty 2-wall bone defects were made in the proximal region of the premolar in the dry pig mandibles. The digital and conventional radiographs were taken using a Schick sensor and Kodak F-speed intraoral film. Image manipulation (inversion) was performed using Adobe Photoshop 7.0 software. Four trained examiners made all of the radiographic measurements in millimeters a total of three times from the cementoenamel junction to the most apical extension of the bone loss with both types of images: inverted digital and film. The measurements were also made in dry mandibles using a periodontal probe and digital caliper. The Student's t-test was used to compare the depth measurements obtained from the two types of images and direct visual measurement in the dry mandibles. A significance level of 0.05 for a 95% confidence interval was used for each comparison. Results: There was a significant difference between depth measurements in the inverted digital images and direct visual measurements (p>|t|=0.0039), with means of 6.29 mm (IC95%:6.04-6.54) and 6.79 mm (IC95%:6.45-7.11), respectively. There was a non-significant difference between the film-based radiographs and direct visual measurements (p>|t|=0.4950), with means of 6.64mm (IC95%:6.40-6.89) and 6.79mm(IC95%:6.45-7.11), respectively. Conclusion: The periodontal bone defect measurements in the inverted digital images were inferior to film-based radiographs, underestimating the amount of bone loss. copy; 2012 by Korean Academy of Oral and Maxillofacial Radiology.
Resumo:
Image segmentation is a process frequently used in several different areas including Cartography. Feature extraction is a very troublesome task, and successful results require more complex techniques and good quality data. The aims of this paper is to study Digital Image Processing techniques, with emphasis in Mathematical Morphology, to use Remote Sensing imagery, making image segmentation, using morphological operators, mainly the multi-scale morphological gradient operator. In the segmentation process, pre-processing operators of Mathematical Morphology were used, and the multi-scales gradient was implemented to create one of the images used as marker image. Orbital image of the Landsat satellite, sensor TM was used. The MATLAB software was used in the implementation of the routines. With the accomplishment of tests, the performance of the implemented operators was verified and carried through the analysis of the results. The extration of linear feature, using mathematical morphology techniques, can contribute in cartographic applications, as cartographic products updating. The comparison to the best result obtained was performed by means of the morphology with conventional techniques of features extraction. © Springer-Verlag 2004.
Resumo:
The integration of CMOS cameras with embedded processors and wireless communication devices has enabled the development of distributed wireless vision systems. Wireless Vision Sensor Networks (WVSNs), which consist of wirelessly connected embedded systems with vision and sensing capabilities, provide wide variety of application areas that have not been possible to realize with the wall-powered vision systems with wired links or scalar-data based wireless sensor networks. In this paper, the design of a middleware for a wireless vision sensor node is presented for the realization of WVSNs. The implemented wireless vision sensor node is tested through a simple vision application to study and analyze its capabilities, and determine the challenges in distributed vision applications through a wireless network of low-power embedded devices. The results of this paper highlight the practical concerns for the development of efficient image processing and communication solutions for WVSNs and emphasize the need for cross-layer solutions that unify these two so-far-independent research areas.
Resumo:
[EN]An accurate estimation of the number of people entering / leaving a controlled area is an interesting capability for automatic surveil- lance systems. Potential applications where this technology can be ap- plied include those related to security, safety, energy saving or fraud control. In this paper we present a novel con guration of a multi-sensor system combining both visual and range data specially suited for trou- blesome scenarios such as public transportation. The approach applies probabilistic estimation lters on raw sensor data to create intermediate level hypothesis that are later fused using a certainty-based integration stage. Promising results have been obtained in several tests performed on a realistic test bed scenario under variable lightning conditions.