918 resultados para Image pre-processing
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The use of mobile robots turns out to be interesting in activities where the action of human specialist is difficult or dangerous. Mobile robots are often used for the exploration in areas of difficult access, such as rescue operations and space missions, to avoid human experts exposition to risky situations. Mobile robots are also used in agriculture for planting tasks as well as for keeping the application of pesticides within minimal amounts to mitigate environmental pollution. In this paper we present the development of a system to control the navigation of an autonomous mobile robot through tracks in plantations. Track images are used to control robot direction by pre-processing them to extract image features. Such features are then submitted to a support vector machine and an artificial neural network in order to find out the most appropriate route. A comparison of the two approaches was performed to ascertain the one presenting the best outcome. The overall goal of the project to which this work is connected is to develop a real time robot control system to be embedded into a hardware platform. In this paper we report the software implementation of a support vector machine and of an artificial neural network, which so far presented respectively around 93% and 90% accuracy in predicting the appropriate route. (C) 2013 The Authors. Published by Elsevier B.V. Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science
Resumo:
This paper discusses about the use of remote sensing image and processing digital images tools for mapping and assessing the effect on the biomass of the culture of sugar cane in the city of Rio Claro. We used satellite images from CBERS in the passages of 19/04/2009 and 23/09/08, which correspond respectively to the stages where the sugar cane appeared in growing and adult pre-harvest stage. In these images, we applied procedures of digital processing, as the application of the procedures for extending linear contrast, radiometric normalization, Normalized Vegetation Index (NDVI) and pixel by pixel classification by ISOSEG through of the software SPRING. As a result we obtained mapping of the distribution and development stages of the culture of sugar cane in the city of Rio Claro and the mapping of the existing biomass of this culture, showing that the method used to assess the relative effect on biomass in culture of sugar cane was efficient, and that images of low-medium resolution are not the most suitable for the mapping of this culture
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Innerhalb des Untersuchungsgebiets Schleswig-Holstein wurden 39.712 topographische Hohlformen detektiert. Genutzt wurden dazu ESRI ArcMap 9.3 und 10.0. Der Datenaufbereitung folgten weitere Kalkulationen in MATLAB R2010b. Jedes Objekt wurde räumlich mit seinen individuellen Eigenschaften verschnitten. Dazu gehörten Fläche, Umfang, Koordinaten (Zentroide), Tiefe und maximale Tiefe der Hohlform und Formfaktoren wie Rundheit, Konvexität und Elongation. Ziel der vorgestellten Methoden war die Beantwortung von drei Fragestellungen: Sind negative Landformen dazu geeignet Landschaftseinheiten und Eisvorstöße zu unterscheiden und zu bestimmen? Existiert eine Kopplung von Depressionen an der rezenten Topographie zu geologischen Tiefenstrukturen? Können Senken unterschiedlicher Entstehung anhand ihrer Formcharakteristik unterteilt werden? Die vorgenommene Klassifikation der großen Landschaftseinheiten basiert auf der Annahme, dass sowohl Jungmoränengebiete, ihre Vorflächen als auch Altmoränengebiete durch charakteristische, abflusslose Hohlformen, wie Toteislöcher, Seen, etc. abgegrenzt werden können. Normalerweise sind solche Depressionen in der Natur eher selten, werden jedoch für ehemalige Glaziallandschaften als typisch erachtet. Ziel war es, die geologischen Haupteinheiten, Eisvorstöße und Moränengebiete der letzten Vereisungen zu differenzieren. Zur Bearbeitung wurde ein Detektionsnetz verwendet, das auf quadratischen Zellen beruht. Die Ergebnisse zeigen, dass durch die alleinige Nutzung von Depressionen zur Klassifizierung von Landschaftseinheiten Gesamtgenauigkeiten von bis zu 71,4% erreicht werden können. Das bedeutet, dass drei von vier Detektionszellen korrekt zugeordnet werden können. Jungmoränen, Altmoränen, periglazialeVorflächen und holozäne Bereiche können mit Hilfe der Hohlformen mit großer Sicherheit voneinander unterschieden und korrekt zugeordnet werden. Dies zeigt, dass für die jeweiligen Einheiten tatsächlich bestimmte Senkenformen typisch sind. Die im ersten Schritt detektierten Senken wurden räumlich mit weiterreichenden geologischen Informationen verschnitten, um zu untersuchen, inwieweit natürliche Depressionen nur glazial entstanden sind oder ob ihre Ausprägung auch mit tiefengeologischen Strukturen in Zusammenhang steht. 25.349 (63,88%) aller Senken sind kleiner als 10.000 m² und liegen in Jungmoränengebieten und können vermutlich auf glaziale und periglaziale Einflüsse zurückgeführt werden. 2.424 Depressionen liegen innerhalb der Gebiete subglazialer Rinnen. 1.529 detektierte Hohlformen liegen innerhalb von Subsidenzgebieten, von denen 1.033 innerhalb der Marschländer im Westen verortet sind. 919 große Strukturen über 1 km Größe entlang der Nordsee sind unter anderem besonders gut mit Kompaktionsbereichen elsterzeitlicher Rinnen zu homologisieren.344 dieser Hohlformen sind zudem mit Tunneltälern im Untergrund assoziiert. Diese Parallelität von Depressionen und den teils über 100 m tiefen Tunneltälern kann auf Sedimentkompaktion zurückgeführt werden. Ein Zusammenhang mit der Zersetzung postglazialen, organischen Materials ist ebenfalls denkbar. Darüber hinaus wurden in einer Distanz von 10 km um die miozän aktiven Flanken des Glückstadt-Grabens negative Landformen detektiert, die Verbindungen zu oberflächennahen Störungsstrukturen zeigen. Dies ist ein Anzeichen für Grabenaktivität während und gegen Ende der Vereisung und während des Holozäns. Viele dieser störungsbezogenen Senken sind auch mit Tunneltälern assoziiert. Entsprechend werden drei zusammenspielende Prozesse identifiziert, die mit der Entstehung der Hohlformen in Verbindung gebracht werden können. Eine mögliche Interpretation ist, dass die östliche Flanke des Glückstadt-Grabens auf die Auflast des elsterzeitlichen Eisschilds reagierte, während sich subglazial zeitgleich Entwässerungsrinnen entlang der Schwächezonen ausbildeten. Diese wurden in den Warmzeiten größtenteils durch Torf und unverfestigte Sedimente verfüllt. Die Gletschervorstöße der späten Weichselzeit aktivierten erneut die Flanken und zusätzlich wurde das Lockermaterial exariert, wodurch große Seen, wie z. B. der Große Plöner See entstanden sind. Insgesamt konnten 29 große Depressionen größer oder gleich 5 km in Schleswig-Holstein identifiziert werden, die zumindest teilweise mit Beckensubsidenz und Aktivität der Grabenflanken verbunden sind, bzw. sogar auf diese zurückgehen.Die letzte Teilstudie befasste sich mit der Differenzierung von Senken nach deren potentieller Genese sowie der Unterscheidung natürlicher von künstlichen Hohlformen. Dazu wurde ein DEM für einen Bereich im Norden Niedersachsens verwendet, das eine Gesamtgröße von 252 km² abdeckt. Die Ergebnisse zeigen, dass glazial entstandene Depressionen gute Rundheitswerte aufweisen und auch Elongation und Exzentrizität eher kompakte Formen anzeigen. Lineare negative Strukturen sind oft Flüsse oder Altarme. Sie können als holozäne Strukturen identifiziert werden. Im Gegensatz zu den potentiell natürlichen Senkenformen sind künstlich geschaffene Depressionen eher eckig oder ungleichmäßig und tendieren meist nicht zu kompakten Formen. Drei Hauptklassen topographischer Depressionen konnten identifiziert und voneinander abgegrenzt werden: Potentiell glaziale Senken (Toteisformen), Flüsse, Seiten- und Altarme sowie künstliche Senken. Die Methode der Senkenklassifikation nach Formparametern ist ein sinnvolles Instrument, um verschiedene Typen unterscheiden zu können und um bei geologischen Fragestellungen künstliche Senken bereits vor der Verarbeitung auszuschließen. Jedoch zeigte sich, dass die Ergebnisse im Wesentlichen von der Auflösung des entsprechenden Höhenmodells abhängen.
Resumo:
In den westlichen Industrieländern ist das Mammakarzinom der häufigste bösartige Tumor der Frau. Sein weltweiter Anteil an allen Krebserkrankungen der Frau beläuft sich auf etwa 21 %. Inzwischen ist jede neunte Frau bedroht, während ihres Lebens an Brustkrebs zu erkranken. Die alterstandardisierte Mortalitätrate liegt derzeit bei knapp 27 %.rnrnDas Mammakarzinom hat eine relative geringe Wachstumsrate. Die Existenz eines diagnostischen Verfahrens, mit dem alle Mammakarzinome unter 10 mm Durchmesser erkannt und entfernt werden, würden den Tod durch Brustkrebs praktisch beseitigen. Denn die 20-Jahres-Überlebungsrate bei Erkrankung durch initiale Karzinome der Größe 5 bis 10 mm liegt mit über 95 % sehr hoch.rnrnMit der Kontrastmittel gestützten Bildgebung durch die MRT steht eine relativ junge Untersuchungsmethode zur Verfügung, die sensitiv genug zur Erkennung von Karzinomen ab einer Größe von 3 mm Durchmesser ist. Die diagnostische Methodik ist jedoch komplex, fehleranfällig, erfordert eine lange Einarbeitungszeit und somit viel Erfahrung des Radiologen.rnrnEine Computer unterstützte Diagnosesoftware kann die Qualität einer solch komplexen Diagnose erhöhen oder zumindest den Prozess beschleunigen. Das Ziel dieser Arbeit ist die Entwicklung einer vollautomatischen Diagnose Software, die als Zweitmeinungssystem eingesetzt werden kann. Meines Wissens existiert eine solche komplette Software bis heute nicht.rnrnDie Software führt eine Kette von verschiedenen Bildverarbeitungsschritten aus, die dem Vorgehen des Radiologen nachgeahmt wurden. Als Ergebnis wird eine selbstständige Diagnose für jede gefundene Läsion erstellt: Zuerst eleminiert eine 3d Bildregistrierung Bewegungsartefakte als Vorverarbeitungsschritt, um die Bildqualität der nachfolgenden Verarbeitungsschritte zu verbessern. Jedes kontrastanreichernde Objekt wird durch eine regelbasierte Segmentierung mit adaptiven Schwellwerten detektiert. Durch die Berechnung kinetischer und morphologischer Merkmale werden die Eigenschaften der Kontrastmittelaufnahme, Form-, Rand- und Textureeigenschaften für jedes Objekt beschrieben. Abschließend werden basierend auf den erhobenen Featurevektor durch zwei trainierte neuronale Netze jedes Objekt in zusätzliche Funde oder in gut- oder bösartige Läsionen klassifiziert.rnrnDie Leistungsfähigkeit der Software wurde auf Bilddaten von 101 weiblichen Patientinnen getested, die 141 histologisch gesicherte Läsionen enthielten. Die Vorhersage der Gesundheit dieser Läsionen ergab eine Sensitivität von 88 % bei einer Spezifität von 72 %. Diese Werte sind den in der Literatur bekannten Vorhersagen von Expertenradiologen ähnlich. Die Vorhersagen enthielten durchschnittlich 2,5 zusätzliche bösartige Funde pro Patientin, die sich als falsch klassifizierte Artefakte herausstellten.rn
Resumo:
Statistical shape models (SSMs) have been used widely as a basis for segmenting and interpreting complex anatomical structures. The robustness of these models are sensitive to the registration procedures, i.e., establishment of a dense correspondence across a training data set. In this work, two SSMs based on the same training data set of scoliotic vertebrae, and registration procedures were compared. The first model was constructed based on the original binary masks without applying any image pre- and post-processing, and the second was obtained by means of a feature preserving smoothing method applied to the original training data set, followed by a standard rasterization algorithm. The accuracies of the correspondences were assessed quantitatively by means of the maximum of the mean minimum distance (MMMD) and Hausdorf distance (H(D)). Anatomical validity of the models were quantified by means of three different criteria, i.e., compactness, specificity, and model generalization ability. The objective of this study was to compare quasi-identical models based on standard metrics. Preliminary results suggest that the MMMD distance and eigenvalues are not sensitive metrics for evaluating the performance and robustness of SSMs.
Resumo:
Mittels generativer Fertigung ist es heute möglich die, Entwicklungszeit und Ferti-gungsdauer von Prototypen, Produkten und Werkzeugen zu verkürzen. Neben dieser Zeitersparnis sind die im Vergleich zu konventionellen Fertigungsverfahren unwe-sentlichen Geometriebeschränkungen für den Anwender von besonderem Interesse. Dieses Alleinstellungsmerkmal der generativen Fertigung macht es möglich auch komplexe Geometrie wirtschaftlich herzustellen. Voraussetzung für eine wirtschaftli-che und fehlerminimierte Fertigung ist hierbei eine möglichst optimale Prozessvorbe-reitung (Pre-Processing). Dabei sind insbesondere die Schritte der Bauteilorientie-rung, der Stützkonstruktionserzeugung, der Schichtzerlegung sowie der Bauraum-ausnutzung von Interesse. Auch wenn diese Punkte wesentlich zur Qualität und Wirtschaftlichkeit beitragen, sind die Erkenntnisse für den unerfahrenen Anwender nur unzureichend dokumentiert, wodurch eine möglichst effiziente Fertigung zu-nächst ausgeschlossen werden kann. Anhand unterschiedlicher Beispiele sollen dem Anwender hier die Möglichkeiten zur Optimierung dieser Pre-Processing Schritte er-läutert werden. In diesem Rahmen werden die aktuellen Forschungsergebnisse des Lehrstuhls Rechnereinsatz in der Konstruktion, Institut für Produkt Engineering der Universität Duisburg-Essen in Bezug auf die Optimierung der Bauteilorientierung, der variablen Schichtzerlegung und der Optimierung der Bauraumausnutzung vorgestellt.
Resumo:
When stereo images are captured under less than ideal conditions, there may be inconsistencies between the two images in brightness, contrast, blurring, etc. When stereo matching is performed between the images, these variations can greatly reduce the quality of the resulting depth map. In this paper we propose a method for correcting sharpness variations in stereo image pairs which is performed as a pre-processing step to stereo matching. Our method is based on scaling the 2D discrete cosine transform (DCT) coefficients of both images so that the two images have the same amount of energy in each of a set of frequency bands. Experiments show that applying the proposed correction method can greatly improve the disparity map quality when one image in a stereo pair is more blurred than the other.
Resumo:
A two-pronged approach for the automatic quantitation of multiple sclerosis (MS) lesions on magnetic resonance (MR) images has been developed. This method includes the design and use of a pulse sequence for improved lesion-to-tissue contrast (LTC) and seeks to identify and minimize the sources of false lesion classifications in segmented images. The new pulse sequence, referred to as AFFIRMATIVE (Attenuation of Fluid by Fast Inversion Recovery with MAgnetization Transfer Imaging with Variable Echoes), improves the LTC, relative to spin-echo images, by combining Fluid-Attenuated Inversion Recovery (FLAIR) and Magnetization Transfer Contrast (MTC). In addition to acquiring fast FLAIR/MTC images, the AFFIRMATIVE sequence simultaneously acquires fast spin-echo (FSE) images for spatial registration of images, which is necessary for accurate lesion quantitation. Flow has been found to be a primary source of false lesion classifications. Therefore, an imaging protocol and reconstruction methods are developed to generate "flow images" which depict both coherent (vascular) and incoherent (CSF) flow. An automatic technique is designed for the removal of extra-meningeal tissues, since these are known to be sources of false lesion classifications. A retrospective, three-dimensional (3D) registration algorithm is implemented to correct for patient movement which may have occurred between AFFIRMATIVE and flow imaging scans. Following application of these pre-processing steps, images are segmented into white matter, gray matter, cerebrospinal fluid, and MS lesions based on AFFIRMATIVE and flow images using an automatic algorithm. All algorithms are seamlessly integrated into a single MR image analysis software package. Lesion quantitation has been performed on images from 15 patient volunteers. The total processing time is less than two hours per patient on a SPARCstation 20. The automated nature of this approach should provide an objective means of monitoring the progression, stabilization, and/or regression of MS lesions in large-scale, multi-center clinical trials. ^
Resumo:
The spatial and temporal dynamics of seagrasses have been studied from the leaf to patch (100 m**2) scales. However, landscape scale (> 100 km**2) seagrass population dynamics are unresolved in seagrass ecology. Previous remote sensing approaches have lacked the temporal or spatial resolution, or ecologically appropriate mapping, to fully address this issue. This paper presents a robust, semi-automated object-based image analysis approach for mapping dominant seagrass species, percentage cover and above ground biomass using a time series of field data and coincident high spatial resolution satellite imagery. The study area was a 142 km**2 shallow, clear water seagrass habitat (the Eastern Banks, Moreton Bay, Australia). Nine data sets acquired between 2004 and 2013 were used to create seagrass species and percentage cover maps through the integration of seagrass photo transect field data, and atmospherically and geometrically corrected high spatial resolution satellite image data (WorldView-2, IKONOS and Quickbird-2) using an object based image analysis approach. Biomass maps were derived using empirical models trained with in-situ above ground biomass data per seagrass species. Maps and summary plots identified inter- and intra-annual variation of seagrass species composition, percentage cover level and above ground biomass. The methods provide a rigorous approach for field and image data collection and pre-processing, a semi-automated approach to extract seagrass species and cover maps and assess accuracy, and the subsequent empirical modelling of seagrass biomass. The resultant maps provide a fundamental data set for understanding landscape scale seagrass dynamics in a shallow water environment. Our findings provide proof of concept for the use of time-series analysis of remotely sensed seagrass products for use in seagrass ecology and management.
Resumo:
El presente trabajo describe una nueva metodología para la detección automática del espacio glotal de imágenes laríngeas tomadas a partir de 15 vídeos grabados por el servicio ORL del hospital Gregorio Marañón de Madrid con luz estroboscópica. El sistema desarrollado está basado en el modelo de contornos activos (snake). El algoritmo combina en el pre-procesado, algunas técnicas tradicionales (umbralización y filtro de mediana) con técnicas más sofisticadas tales como filtrado anisotrópico. De esta forma, se obtiene una imagen apropiada para el uso de las snakes. El valor escogido para el umbral es del 85% del pico máximo del histograma de la imagen; sobre este valor la información de los píxeles no es relevante. El filtro anisotrópico permite distinguir dos niveles de intensidad, uno es el fondo y el otro es la glotis. La inicialización se basa en obtener el módulo del campo GVF; de esta manera se asegura un proceso automático para la selección del contorno inicial. El rendimiento del algoritmo se valida usando los coeficientes de Pratt y se compara contra una segmentación realizada manualmente y otro método automático basado en la transformada de watershed. SUMMARY: The present work describes a new methodology for the automatic detection of the glottal space from laryngeal images taken from 15 videos recorded by the ENT service of the Gregorio Marañon Hospital in Madrid with videostroboscopic equipment. The system is based on active contour models (snakes). The algorithm combines for the pre-processing, some traditional techniques (thresholding and median filter) with more sophisticated techniques such as anisotropic filtering. In this way, we obtain an appropriate image for the use of snake. The value selected for the threshold is 85% of the maximum peak of the image histogram; over this point the information of the pixels is not relevant. The anisotropic filter permits to distinguish two intensity levels, one is the background and the other one is the glottis. The initialization is based on the obtained magnitude by GVF field; in this manner an automatic process for the initial contour selection will be assured. The performance of the algorithm is tested using the Pratt coefficient and compared against a manual segmentation and another automatic method based on the watershed transformation.
Resumo:
The present work describes a new methodology for the automatic detection of the glottal space from laryngeal images based on active contour models (snakes). In order to obtain an appropriate image for the use of snakes based techniques, the proposed algorithm combines a pre-processing stage including some traditional techniques (thresholding and median filter) with more sophisticated ones such as anisotropic filtering. The value selected for the thresholding was fixed to the 85% of the maximum peak of the image histogram, and the anisotropic filter permits to distinguish two intensity levels, one corresponding to the background and the other one to the foreground (glottis). The initialization carried out is based on the magnitude obtained using the Gradient Vector Flow field, ensuring an automatic process for the selection of the initial contour. The performance of the algorithm is tested using the Pratt coefficient and compared against a manual segmentation. The results obtained suggest that this method provided results comparable with other techniques such as the proposed in (Osma-Ruiz et al., 2008).
Resumo:
Remote sensing information from spaceborne and airborne platforms continues to provide valuable data for different environmental monitoring applications. In this sense, high spatial resolution im-agery is an important source of information for land cover mapping. For the processing of high spa-tial resolution images, the object-based methodology is one of the most commonly used strategies. However, conventional pixel-based methods, which only use spectral information for land cover classification, are inadequate for classifying this type of images. This research presents a method-ology to characterise Mediterranean land covers in high resolution aerial images by means of an object-oriented approach. It uses a self-calibrating multi-band region growing approach optimised by pre-processing the image with a bilateral filtering. The obtained results show promise in terms of both segmentation quality and computational efficiency.