988 resultados para ISGs (Interferon Stimulated Genes)
Resumo:
5'-Deoxy-5'-methylthioadenosine phosphorylase (methylthioadeno-sine: ortho-phosphate methylthioribosyltransferase, EC 24.2.28; MTAP) plays a role in purine and polyamine metabolism and in the regulation of transmethylation reactions. MTAP is abundant in normal cells but is deficient in many cancers. Recently, the genes for the cyclin-dependent kinase inhibitors p16 and p15 have been localized to the short arm of human chromosome 9 at band p21, where MTAP and interferon alpha genes (IFNA) also map. Homozygous deletions of p16 and p15 are frequent malignant cell lines. However, the order of the MTAP, p16, p15, and IFNA genes on chromosome 9p is uncertain, and the molecular basis for MTAP deficiency in cancer is unknown. We have cloned the MTAP gene, and have constructed a topologic map of the 9p21 region using yeast artificial chromosome clones, pulse-field gel electrophoresis, and sequence-tagged-site PCR. The MTAP gene consists of eight exons and seven introns. Of 23 malignant cell lines deficient in MTAP protein, all but one had complete or partial deletions. Partial or total deletions of the MTAP gene were found in primary T-cell acute lymphoblastic leukemias (T-ALL). A deletion breakpoint of partial deletions found in cell lines and primary T-ALL was in intron 4. Starting from the centromeric end, the gene order on chromosome 9p2l is p15, p16, MTAP, IFNA, and interferon beta gene (IFNB). These results indicate that MTAP deficiency in cancer is primarily due to codeletion of the MTAP and p16 genes.
Resumo:
Solid tumours display elevated resistance to chemo- and radiotherapies compared to individual tumour derived cells. This so-called multicellular resistance (MCR) phenomenon can only be partly explained by reduced diffusion and altered cell cycle status; even fast growing cells on the surface of solid tumours display MCR. Multicellular spheroids (MCS) recapture this phenomenon ex vivo and here we compare gene expression in exponentially growing MCS with gene expression in monolayer culture. Using an 18,664 gene microarray, we identified 42 differentially expressed genes and three of these genes can be linked to potential mechanisms of MCR. A group of interferon response genes were also up-regulated in MCS, as were a number of genes that that are indicative of greater differentiation in three-dimensional cultures.
Resumo:
Innate immune responses play a central role in neuroprotection and neurotoxicity during inflammatory processes that are triggered by pathogen-associated molecular pattern-exhibiting agents such as bacterial lipopolysaccharide (LPS) and that are modulated by inflammatory cytokines such as interferon γ (IFNγ). Recent findings describing the unexpected complexity of mammalian genomes and transcriptomes have stimulated further identification of novel transcripts involved in specific physiological and pathological processes, such as the neural innate immune response that alters the expression of many genes. We developed a system for efficient subtractive cloning that employs both sense and antisense cRNA drivers, and coupled it with in-house cDNA microarray analysis. This system enabled effective direct cloning of differentially expressed transcripts, from a small amount (0.5 µg) of total RNA. We applied this system to isolation of genes activated by LPS and IFNγ in primary-cultured cortical cells that were derived from newborn mice, to investigate the mechanisms involved in neuroprotection and neurotoxicity in maternal/perinatal infections that cause various brain injuries including periventricular leukomalacia. A number of genes involved in the immune and inflammatory response were identified, showing that neonatal neuronal/glial cells are highly responsive to LPS and IFNγ. Subsequent RNA blot analysis revealed that the identified genes were activated by LPS and IFNγ in a cooperative or distinctive manner, thereby supporting the notion that these bacterial and cellular inflammatory mediators can affect the brain through direct but complicated pathways. We also identified several novel clones of apparently non-coding RNAs that potentially harbor various regulatory functions. Characterization of the presently identified genes will give insights into mechanisms and interventions not only for perinatal infection-induced brain damage, but also for many other innate immunity-related brain disorders.
Resumo:
Insulin-dependent diabetes mellitus is an autoimmune disease in which pancreatic islet beta cells are destroyed by a combination of immunological and inflammatory mechanisms. In particular, cytokine-induced production of nitric oxide has been shown to correlate with beta cell apoptosis and/or inhibition of insulin secretion. In the present study, we investigated whether the interleukin (IL)-1beta intracellular signal transduction pathway could be blocked by overexpression of dominant negative forms of the IL-1 receptor interacting protein MyD88. We show that overexpression of the Toll domain or the lpr mutant of MyD88 in betaTc-Tet cells decreased nuclear factor kappaB (NF-kappaB) activation upon IL-1beta and IL-1beta/interferon (IFN)-gamma stimulation. Inducible nitric oxide synthase mRNA accumulation and nitrite production, which required the simultaneous presence of IL-1beta and IFN-gamma, were also suppressed by approximately 70%, and these cells were more resistant to cytokine-induced apoptosis as compared with parental cells. The decrease in glucose-stimulated insulin secretion induced by IL-1beta and IFN-gamma was however not prevented. This was because these dysfunctions were induced by IFN-gamma alone, which decreased cellular insulin content and stimulated insulin exocytosis. These results demonstrate that IL-1beta is involved in inducible nitric oxide synthase gene expression and induction of apoptosis in mouse beta cells but does not contribute to impaired glucose-stimulated insulin secretion. Furthermore, our data show that IL-1beta cellular actions can be blocked by expression of MyD88 dominant negative proteins and, finally, that cytokine-induced beta cell secretory dysfunctions are due to the action of IFN-gamma.
Resumo:
The inflammatory response elicited by various stimuli such as microbial products or cytokines is determined by differences in the pattern of cellular gene expression. We have used the differential display RT-PCR (DDRT-PCR) strategy to identify mRNAs that are differentially expressed in various murine cell types stimulated with pro-inflammatory cytokines, microbial products or anti-inflammatory drugs. Mouse embryonic fibroblasts (MEFs) were treated with IFNs, TNF, or sodium salicylate. Also, peritoneal macrophages from C3H/Hej mice were stimulated with T. cruzi-derived GPI-mucin and/or IFN-g. After DDRT-PCR, various cDNA fragments that were differentially represented on the sequencing gel were recovered, cloned and sequenced. Here, we describe a summary of several experiments and show that, when 16 of a total of 28 recovered fragments were tested for differential expression, 5 (31%) were found to represent mRNAs whose steady-state levels are indeed modulated by the original stimuli. Some of the identified cDNAs encode for known proteins that were not previously associated with the inflammatory process triggered by the original stimuli. Other cDNA fragments (8 of 21 sequences, or 38%) showed no significant homology with known sequences and represent new mouse genes whose characterization might contribute to our understanding of inflammation. In conclusion, DDRT-PCR has proven to be a potent technology that will allow us to identify genes that are differentially expressed when cells are subjected to changes in culture conditions or isolated from different organs.
Resumo:
The purpose of the present study was to investigate the expression (mRNA) of CD40 ligand (CD40L), interferon-gamma (IFN-gamma) and Fas ligand (FasL) genes in human cardiac allografts in relation to the occurrence of acute cardiac allograft rejection as well as its possible value in predicting acute rejection. The mRNA levels were determined by a semiquantitative reverse transcriptase-polymerase chain reaction method in 39 samples of endomyocardial biopsies obtained from 10 adult cardiac transplant recipients within the first six months after transplantation. Biopsies with ongoing acute rejection showed significantly higher CD40L, IFN-gamma and FasL mRNA expression than biopsies without rejection. The median values of mRNA expression in biopsies with and without rejection were 0.116 and zero for CD40L (P<0.003), 0.080 and zero for IFN-gamma (P<0.0009), and 0.156 and zero for FasL (P<0.002), respectively. In addition, the levels of IFN-gamma mRNA were significantly increased 7 to 15 days before the appearance of histological evidence of rejection (median of 0.086 in pre-rejection biopsies), i.e., they presented a predictive value. This study provides further evidence of heightened expression of immune activation genes during rejection and shows that some of these markers may present predictive value for the occurrence of acute rejection.
Resumo:
Cloning of the T-cell receptor genes is a critical step when generating T-cell receptor transgenic mice. Because T-cell receptor molecules are clonotypical, isolation of their genes requires reverse transcriptase-assisted PCR using primers specific for each different Valpha or Vß genes or by the screening of cDNA libraries generated from RNA obtained from each individual T-cell clone. Although feasible, these approaches are laborious and costly. The aim of the present study was to test the application of the non-palindromic adaptor-PCR method as an alternative to isolate the genes encoding the T-cell receptor of an antigen-specific T-cell hybridoma. For this purpose, we established hybridomas specific for trans-sialidase, an immunodominant Trypanosoma cruzi antigen. These T-cell hybridomas were characterized with regard to their ability to secrete interferon-gamma, IL-4, and IL-10 after stimulation with the antigen. A CD3+, CD4+, CD8- interferon-gamma-producing hybridoma was selected for the identification of the variable regions of the T-cell receptor by the non-palindromic adaptor-PCR method. Using this methodology, we were able to rapidly and efficiently determine the variable regions of both T-cell receptor chains. The results obtained by the non-palindromic adaptor-PCR method were confirmed by the isolation and sequencing of the complete cDNA genes and by the recognition with a specific antibody against the T-cell receptor variable ß chain. We conclude that the non-palindromic adaptor-PCR method can be a valuable tool for the identification of the T-cell receptor transcripts of T-cell hybridomas and may facilitate the generation of T-cell receptor transgenic mice.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A resposta imune na malária é complexa, e os mecanismos de ativação e regulação de linfócitos T efetores e de memória ainda são pouco compreendidos. No presente estudo, determinamos a concentração das citocinas Interferon-γ (IFN-γ), Interleucina-10 (IL-10), Interleucina-4 (IL-4) e Interleucina-12 (IL-12) no soro de indivíduos infectados por Plasmodium vivax, investigamos os polimorfismos no gene do IFN-γ (IFNG+874) e da IL-10 (IL10-1082) e analisamos a associação destes polimorfismos com a concentração das citocinas e com a densidade parasitária. A concentração das citocinas foi determinada por ELISA, e a genotipagem dos polimorfismos IFNG+874 e IL10-1082 foi realizada pelas técnicas de ASO-PCR e PCR-RFLP, respectivamente. Os indivíduos infectados apresentaram níveis séricos de IFN-γ e IL-10 aumentados. A produção de IFN-γ foi maior nos indivíduos primoinfectados, porém não foi associada com a redução da parasitemia. A produção de IL-10 foi alta e associada com altas parasitemias. As citocinas IL-4 e IL-12 não foram detectadas. As freqüências dos genótipos homozigoto mutante AA, heterozigoto AT e selvagem TT do gene do IFN-γ foram 0,51, 0,39 e 0,10, respectivamente. As freqüências dos genótipos homozigoto mutante AA, heterozigoto AG e selvagem GG para IL10 foram 0,49, 0,43 e 0,08, respectivamente. Apenas o polimorfismo do IFN-γ foi associado com níveis reduzidos desta citocina. Na malária causada por P. vivax, houve produção de citocina que caracteriza o perfil Th1 (IFN-γ), com possível participação da IL-10 na imunorregulação.
Resumo:
p48 protein is an integral component of the multimeric interferon (IFN)-regulated transcription factor, ISGF3. We have shown earlier that this gene is regulated by a novel IFN-γ-regulated element. In addition to the IFN-regulated element, a myc–max binding site is also present in this promoter. In this investigation we have studied the role of this site in the regulation of the p48 gene. In serum-induced quiescent cells Myc up-regulated the expression of p48 mRNA. We show that the protooncogene Myc regulates the expression of p48 through the element CACGTG. Mutations in this motif abolish Myc-inducibility of the reporter genes carrying p48 promoter elements. Purified Myc and Max proteins interact with the Myc-stimulated element of the p48 promoter. We also show that cells lacking p48 expression are highly susceptible to the cytocidal action of anticancer drugs. Taken together these data suggest that p48 may function as an anti-stress cell survival factor.
Resumo:
ICSBP is a member of the interferon (IFN) regulatory factor (IRF) family that regulates expression of type I interferon (IFN) and IFN-regulated genes. To study the role of the IRF family in viral infection, a cDNA for the DNA-binding domain (DBD) of ICSBP was stably transfected into U937 human monocytic cells. Clones that expressed DBD exhibited a dominant negative phenotype and did not elicit antiviral activity against vesicular stomatitis virus (VSV) infection upon IFN treatment. Most notably, cells expressing DBD were refractory to infection by vaccinia virus (VV) and human immunodeficiency virus type 1 (HIV-1). The inhibition of VV infection was attributed to defective virion assembly, and that of HIV-1 to low CD4 expression and inhibition of viral transcription in DBD clones. HIV-1 and VV were found to have sequences in their regulatory regions similar to the IFN-stimulated response element (ISRE) to which IRF family proteins bind. Accordingly, these viral sequences and a cellular ISRE bound a shared factor(s) expressed in U937 cells. These observations suggest a novel host-virus relationship in which the productive infection of some viruses is regulated by the IRF-dependent transcription pathway through the ISRE.
Resumo:
Members of the IRF family mediate transcriptional responses to interferons (IFNs) and to virus infection. So far, proteins of this family have been studied only among mammalian species. Here we report the isolation of cDNA clones encoding two members of this family from chicken, interferon consensus sequence-binding protein (ICSBP) and IRF-1. The predicted chicken ICSBP and IRF-1 proteins show high levels of sequence similarity to their corresponding human and mouse counterparts. Sequence identities in the putative DNA-binding domains of chicken and human ICSBP and IRF-1 were 97% and 89%, respectively, whereas the C-terminal regions showed identities of 64% and 51%; sequence relationships with mouse ICSBP and IRF-1 are very similar. Chicken ICSBP was found to be expressed in several embryonic tissues, and both chicken IRF-1 and ICSBP were strongly induced in chicken fibroblasts by IFN treatment, supporting the involvement of these factors in IFN-regulated gene expression. The presence of proteins homologous to mammalian IRF family members, together with earlier observations on the occurrence of functionally homologous IFN-responsive elements in chicken and mammalian genes, highlights the conservation of transcriptional mechanisms in the IFN system, a finding that contrasts with the extensive sequence and functional divergence of the IFNs.
Resumo:
Differential gene expression analysis by suppression subtractive hybridization with correlation to the metabolic pathways involved in chronic myeloid leukemia (CML) may provide a new insight into the pathogenesis of CML. Among the overexpressed genes found in CML at diagnosis are SEPT5, RUNX1, MIER1, KPNA6 and FLT3, while PAN3, TOB1 and ITCH were decreased when compared to healthy volunteers. Some genes were identified and involved in CML for the first time, including TOB1, which showed a low expression in patients with CML during tyrosine kinase inhibitor treatment with no complete cytogenetic response. In agreement, reduced expression of TOB1 was also observed in resistant patients with CML compared to responsive patients. This might be related to the deregulation of apoptosis and the signaling pathway leading to resistance. Most of the identified genes were related to the regulation of nuclear factor κB (NF-κB), AKT, interferon and interleukin-4 (IL-4) in healthy cells. The results of this study combined with literature data show specific gene pathways that might be explored as markers to assess the evolution and prognosis of CML as well as identify new therapeutic targets.
Resumo:
Objective: Our aim was to analyze the effect of laser phototherapy on the secretory activity of macrophages activated by interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS), and stimulated by substances leached from an epoxy resin-based sealer (AH-Plus) and a calcium hydroxide-based sealer (Sealapex). Background Data: Laser phototherapy can modulate the inflammatory process, improving wound healing. This type of therapy could be useful for modulating postoperative symptoms seen after endodontic treatment. Materials and Methods: Cytotoxicity was indirectly assessed by measuring mitochondrial activity. Macrophages were stimulated by the leached substances or not (controls), and the groups were then irradiated or not. The secretion of pro-inflammatory cytokines (TNF-alpha and MMP-1) was analyzed using ELISA. Two irradiations at 6-h intervals were done with an As-Ga-Al diode laser (780 nm, 70 mW, spot size 4.0 mm(2), 3 J/cm(2), for 1.5 sec) in contact mode. Results: The sealers were non-cytotoxic to macrophages. The production of TNF-alpha was significantly decreased by laser phototherapy, regardless of experimental group. The level of secretion of MMP-1 was similar in all groups. Conclusion: Based on the conditions of this study we concluded that in activated macrophages, laser phototherapy impairs the secretion of the pro-inflammatory cytokine TNF-alpha, but has no influence on MMP-1 secretion.