994 resultados para IODINE 125
Resumo:
Hydrate Ridge off the coast of Oregon, USA, is a prime example for gas hydrate occurrences in active margin settings. It is part of the Cascadia Margin and was the focus of Ocean Drilling Program (ODP) Leg 204, which successfully recovered fluids from nine sites from the southern part of the ridge. Iodide concentrations in pore fluids associated with gas hydrates are strongly enhanced, by factors up to 5000 compared to seawater, which allows the use of this biophilic element as tracer for organic source regions. We applied the cosmogenic isotope 129I (T1/2=15.7 Ma) system to determine the age of the organic source formation responsible for the iodide enrichment. In all sites at ODP Leg 204, 129I/I ratios were found to decrease with depth to values around 250x10**-15, corresponding to minimum ages of 40 Ma, but in several sites, maxima in the 129I/I ratios point to the local addition of young iodide. The results indicate that a large amount of iodide was derived from deep accreted sediments of Eocene age, and that additional source regions provide iodide of Late Miocene age. The presence of old iodide in the pore waters suggests that fluid pathways are open to allow transport over large distances into the gas hydrate fields. The strong correlation between iodide and methane in hydrate fields coupled with the similarity in transport parameters in aqueous solutions suggests that a large fraction of methane in gas hydrates also has old sources and is transported into the present locations from source regions of Eocene age.
Resumo:
Biodiesel is a renewable fuel that has been shown to reduce many exhaust emissions, except oxides of nitrogen (NOx), in diesel engine cars. This is of special concern in inner urban areas that are subject to strict environmental regulations, such as EURO norms. Also, the use of pure biodiesel (B100) is inhibited because of its higher NOx emissions compared to petroleum diesel fuel. The aim of this present work is to investigate the effect of the iodine value and cetane number of various biodiesel fuels obtained from different feed stocks on the combustion and NOx emission characteristics of a direct injection (DI) diesel engine. The biodiesel fuels were chosen from various feed stocks such as coconut, palm kernel, mahua (Madhuca indica), pongamia pinnata, jatropha curcas, rice bran, and sesame seed oils. The experimental results show an approximately linear relationship between iodine value and NOx emissions. The biodiesels obtained from coconut and palm kernel showed lower NOx levels than diesel, but other biodiesels showed an increase in NOx. It was observed that the nature of the fatty acids of the biodiesel fuels had a significant influence on the NOx emissions. Also, the cetane numbers of the biodiesel fuels are affected both premixed combustion and the combustion rate, which further affected the amount of NOx formation. It was concluded that NOx emissions are influenced by many parameters of biodiesel fuels, particularly the iodine value and cetane number.
Zinc aluminium layered double hydroxides for the removal of iodine and iodide from aqueous solutions
Resumo:
129I is a radioactive isotope of iodine that is readily absorbed by the body. In this paper we investigated the potential of a 3:1 Zn/Al layered double hydroxide (LDH) as a sorbent for the removal of iodine and iodide from water. Synthetic Zn6Al2(OH)16(CO3)∙4H2O was prepared by the co-precipitation before thermal activation. The LDH was treated with solutions containing iodide and iodine. It was found that iodine could be more easily removed from solution than iodide. Powder X-ray diffraction revealed the destruction of the LDH structure during thermal activation and the successful reformation of a similar LDH material after treatment with the iodide or iodine solution. Thermal decomposition of all samples studied by thermogravimetry appeared to be similar. A new decomposition mechanism similar to one previously described in the literature was proposed for the Zn/Al LDH. The total mass loss of samples treated with iodide and iodine was significantly lower than that of the original LDH indicating that iodine species may form non-removable anions when intercalated into the LDH structure. Evolved gas mass spectrometry failed to detect any iodine species lost as gases during the decomposition of iodide treated LDH however, small quantities of iodine species were observed during decomposition of samples treated with iodine solution.
Resumo:
Objectives: To evaluate the clinical value of pre-operative serum CA125 in predicting the presence of extra-uterine disease in patients with apparent early stage endometrial cancer. Methods: Between October 6, 2005 and June 17, 2010, 760 patients were enrolled in an international, multicentre, prospective randomized trial (LACE) comparing laparotomy with laparoscopy in the management of endometrial cancer apparently confined to the uterus. This study is based on data from 657 patients with endometrial adenocarcinoma who had a pre-operative serum CA125 value, and was undertaken to correlate pre-operative serum CA125 with final stage. Results: Using a pre-operative CA-125 cutpoint of 30U/ml was associated with the smallest misclassification error (14.5%) using a multiple cross-validation method. Median pre-operative serum CA-125 was 14U/ml, and using a cutpoint of 30U/ml, 14.9% of patients had elevated CA-125 levels. Of 98 patients with elevated CA-125 level, 36 (36.7%) had evidence of extra-uterine disease. Of the 116 patients (17.7%) with evidence of extra-uterine disease, 31.0% had elevated CA-125 level. In univariate and multivariate logistic regression analysis, only pre-operative CA-125 level was found to be associated with extra-uterine spread of disease. Utilising a cutpoint of 30U/ml achieved a sensitivity, specificity, positive predictive value and negative predictive value of 31.0%, 88.5%, 36.7% and 85.7% respectively. Overall, 326/657 (49.6%) of patients had full surgical staging involving lymph node dissection. When analysis was limited to patients that had undergone full surgical staging, the outcomes remained essentially unchanged. Conclusions: Elevated CA-125 above 30U/ml in patients with apparent early stage disease is associated with a sensitivity of 31.0% and specificity of 88.5% in detecting extra-uterine disease. Pre-operative identification of this risk factor may assist to triage patients to tertiary centres and comprehensive surgical staging.
Resumo:
This study investigates the potential of a Zn/Al layered double hydroxides (LHDs) as an adsorbent for the removal of iodine species from potable water (Theiss et al., 2011b). In this paper the resultant materials were characterised using powder x-ray diffraction (XRD) and thermogravimetry (TG) coupled with evolved gas mass spectrometry (EGMS) (Frost, et al, 2005, Rives, et al, 2001).
Resumo:
Development and application of inorganic adsorbent materials have been continuously investigated due to their variability and versatility. This Master thesis has expanded the knowledge in the field of adsorption targeting radioactive iodine waste and proteins using modified inorganic materials. Industrial treatment of radioactive waste and safety disposal of nuclear waste is a constant concern around the world with the development of radioactive materials applications. To address the current problems, laminar titanate with large surface area (143 m2 g−1) was synthesized from inorganic titanium compounds by hydrothermal reactions at 433 K. Ag2O nanocrystals of particle size ranging from 5–30 nm were anchored on the titanate lamina surface which has crystallographic similarity to that of Ag2O nanocrystals. Therefore, the deposited Ag2O nanocrystals and titanate substrate could join together at these surfaces between which there forms a coherent interface. Such coherence between the two phases reduces the overall energy by minimizing surface energy and maintains the Ag2O nanocrystals firmly on the outer surface of the titanate structure. The combined adsorbent was then applied as efficient adsorbent to remove radioactive iodine from water (one gram adsorbent can capture up to 3.4 mmol of I- anions) and the composite adsorbent can be recovered easily for safe disposal. The structure changes of the titanate lamina and the composite adsorbent were characterized via various techniques. The isotherm and kinetics of iodine adsorption, competitive adsorption and column adsorption using the adsorbent were studied to determine the iodine removal abilities of the adsorbent. It is shown that the adsorbent exhibited excellent trapping ability towards iodine in the fix-bed column despite the presence of competitive ions. Hence, Ag2O deposited titanate lamina could serve as an effective adsorbent for removing iodine from radioactive waste. Surface hydroxyl group of the inorganic materials is widely applied for modification purposes and modification of inorganic materials for biomolecule adsorption can also be achieved. Specifically, γ-Al2O3 nanofibre material is converted via calcinations from boehmite precursor which is synthesised by hydrothermal chemical reactions under directing of surfactant. These γ-Al2O3 nanofibres possess large surface area (243 m2 g-1), good stability under extreme chemical conditions, good mechanical strength and rich surface hydroxyl groups making it an ideal candidate in industrialized separation column. The fibrous morphology of the adsorbent also guarantees facile recovery from aqueous solution under both centrifuge and sedimentation approaches. By chemically bonding the dyes molecules, the charge property of γ-Al2O3 is changed in the aim of selectively capturing of lysozyme from chicken egg white solution. The highest Lysozyme adsorption amount was obtained at around 600 mg/g and its proportion is elevated from around 5% to 69% in chicken egg white solution. It was found from the adsorption test under different solution pH that electrostatic force played the key role in the good selectivity and high adsorption rate of surface modified γ-Al2O3 nanofibre adsorbents. Overall, surface modified fibrous γ-Al2O3 could be applied potentially as an efficient adsorbent for capturing of various biomolecules.
Resumo:
Structural investigations of large biomolecules in the gas phase are challenging. Herein, it is reported that action spectroscopy taking advantage of facile carbon-iodine bond dissociation can be used to examine the structures of large molecules, including whole proteins. Iodotyrosine serves as the active chromophore, which yields distinctive spectra depending on the solvation of the side chain by the remainder of the molecule. Isolation of the chromophore yields a double featured peak at ∼290 nm, which becomes a single peak with increasing solvation. Deprotonation of the side chain also leads to reduced apparent intensity and broadening of the action spectrum. The method can be successfully applied to both negatively and positively charged ions in various charge states, although electron detachment becomes a competitive channel for multiply charged anions. In all other cases, loss of iodine is by far the dominant channel which leads to high sensitivity and simple data analysis. The action spectra for iodotyrosine, the iodinated peptides KGYDAKA, DAYLDAG, and the small protein ubiquitin are reported in various charge states. © 2012 American Chemical Society.