893 resultados para INVASIVE ALIEN SPECIES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste estudo, avaliamos a dinâmica da maturação ovariana a desova durante o ciclo reprodutivo de Metynnis maculatus. Fêmeas adultas (n = 36) foram coletadas bimestralmente entre abril de 2010 e março de 2011. O índice gonadossomático (IGS) foi calculado e amostras de ovário e de sangue foram submetidas à avaliação morfométrica e das concentrações plasmáticas dos esteroides por ELISA, respectivamente. A espécie apresenta desenvolvimento ovariano assincrônico, com múltiplas desovas. Neste estudo revelamos que mesmo sendo de desova parcelada, os ovários do M. maculatus mostraram um padrão de desenvolvimento com predomínio de atividade vitelogênica entre abril a agosto e intensificação da desova em setembro. Em outubro houve uma diminuição nos valores médios de IGS, bem como registramos as maiores frequências de folículos pós-ovulatórios (FPOs). Observamos uma correlação positiva entre a frequência de FPOs e a concentração plasmática de 17 α-OHP. O M. maculatus tem potencial para ser usado como fonte para uso de hipófise para preparo de extrato bruto para indução hormonal, sendo o período teórico para coleta de hipófises de setembro a outubro, mas estudos específicos para esta finalidade ainda precisam ser desenvolvidos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invasive exotic species can negatively impact local biodiversity. We present here a report of a nest predation of an endemic bird species, variable oriole (Icterus pyrrhopterus) by the introduced black-tufted marmoset (Callithrix penicillata)in an agricultural landscape highly disturbed by human activities. Two nestlings were predated, by adults of the introduced marmoset during two alternate days. Antipredator behavior and vocal mimicry were observed in variable oriole, while copulation was observed in black-tufted marmoset during the predation. The use of mobbing against predators by I. pyrrhopterus was observed and it is described here by the first time. The potential impact of the introduced marmosets to local biodiversity is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human activities, such intentional and unintentional transplantations, and habitat alterations including the establishment of migration corridors, generate increasing opportunities for formerly allopatric taxa to meet and to hybridize. There is indeed increasing evidence that these introduced plant and animal taxa (including crop plants and domesticated animal taxa) frequently hybridize with native relatives and with other introduced taxa, leading to a growing concern that these hybridizations may compromise the genetic integrity of native taxa to the point of causing extinctions (Abbott 1992; Rhymer and Simberloff 1996; Levin et al. 1996; Ellstrand and Schierenbeck 2000; Vilà et al. 2000). A decade ago, Rhymer and Simberloff (1996) stated in their review on this topic that the known cases are probably just the tip of the iceberg.Using the search term ‘hybridization and introgression’, the Web of Science database yields a total of 1,178 research articles, of which 935 (or 80 %) have been published after 1995 (Fig. 16.1). Indeed, the evidence for natural and man-induced hybridization and introgression appears to have increased exponentially these last few years.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determinants of plant establishment and invasion are a key issue in ecology and evolution. Although establishment success varies substantially among species, the importance of species traits and extrinsic factors as determinants of establishment in existing communities has remained difficult to prove in observational studies because they can be confounded and mask each other. Therefore, we conducted a large multispecies field experiment to disentangle the relative importance of extrinsic factors vs. species characteristics for the establishment success of plants in grasslands. We introduced 48 alien and 45 native plant species at different seed numbers into multiple grassland sites with or without experimental soil disturbance and related their establishment success to species traits assessed in five independent multispecies greenhouse experiments. High propagule pressure and high seed mass were the most important factors increasing establishment success in the very beginning of the experiment. However, after 3 y, propagule pressure became less important, and species traits related to biotic interactions (including herbivore resistance and responses to shading and competition) became the most important drivers of success or failure. The relative importance of different traits was environment-dependent and changed over time. Our approach of combining a multispecies introduction experiment in the field with trait data from independent multispecies experiments in the greenhouse allowed us to detect the relative importance of species traits for early establishment and provided evidence that species traits—fine-tuned by environmental factors—determine success or failure of alien and native plants in temperate grasslands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Some introduced invasive species may be competitively superior to natives because they release allelochemicals, which negatively affect native species. Allelochemicals can be immediately effective after being released but can also persist in soils, resulting in a legacy effect. However, to our knowledge there are no studies which distinguish between allelopathic legacy and immediate allelopathy of invasive species and also test for their relative importance and possible interdependence. We used eleven invasive species and tested whether they show immediate allelopathy and allelopathic legacy effects in a factorial pairwise competition experiment using field-collected soil (invaded/non-invaded) and activated carbon to neutralize allelochemicals. We grew two native and the invasive species in both monocultures and pairwise mixtures. In monocultures, the native species did not experience an allelopathic legacy effect of the invasives, suggesting that invaders generally lack persistent allelochemicals. However, the effects of invader allelochemicals were modulated by competitive interactions. In competition, immediate allelopathy decreased competitive ability of natives, while allelopathic legacy positively affected the natives. Moreover, immediate allelopathic and allelopathic legacy effects were strongly negatively correlated. Our results suggest that both immediately released allelochemicals and the allelochemical legacy of invasive species are important for plant performance under natural conditions, and that natives should be able to recover once the invaders are removed. To test whether immediate allelopathy is responsible for plant invasion success, further studies should compare allelopathic effects between invasive and closely related native species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract A major task in ecology is to establish the degree of generality of ecological mechanisms. Here we present results from a multi-species experiment that tested whether a set of invasive species altered the soil conditions to the detriment of other species by releasing allelopathic compounds or inducing shifts in soil biota composition, and whether this effect was more pronounced relative to a set of closely related native species. We pre-cultivated soil with 23 exotic invasive, 19 related native and 6 related exotic garden species and used plain soil as a control. To separate allelopathy from effects on the soil biota, we sterilized half of the soil. Then, we compared the effect of soil pre-cultivation and sterilization on germination and growth of four native test species in two experiments. The general effect of soil sterilization was positive. The effect of soil pre-cultivation on test species performance was neutral to positive, and sterilization reduced this positive effect. This indicates general absence of allelopathic compounds and a shift toward a less antagonistic soil biota by cultivation species. In both experiments, pre-cultivation effects did not differ systematically between exotic invasive, exotic garden or native species. Our results do not support the hypothesis that invasive plants generally inhibit the growth of others by releasing allelopathic compounds or accumulating a detrimental soil biota.