834 resultados para INTRUSION
Resumo:
To discuss the intrusion of the Kuroshio into the SCS, we examined the mixing between the North Pacific and South China Sea (SCS) waters based on in-situ CTD data collected in August and September 2008 and the moored ADCP data taken from mid September 2008 to early July 2009. The CTD survey included four meridional sections from 119A degrees E to 122A degrees E around the Luzon Strait, during which pressure, temperature, and salinity were measured. The CTD data show that the isopycnal surface tilted from the SCS to the North Pacific; and it was steeper in the lower layers than in the upper ones. Meanwhile, we found strong vertical mixing taken place in the areas near 121A degrees E. The Kuroshio in high temperature and salinity intruded westward through Luzon Strait. The frequency of buoyancy was one order of magnitude greater than that of the common ones in the ocean, suggesting stronger stratification in the northeastern SCS. On the other hand, the long-term ADCP data show that before late October 2008, the direction of water flow in the SCS was eastward, and from November 2008 to late February 2009, it turned northwestward in the layers shallower than 150 m, while remained unchanged in deep layers from 200 to 450 m. From March to June 2009, the direction shifted with increasing depth from northward to southward, akin to the Ekman spiral. EOF analysis of the current time series revealed dominant empirical modes: the first mode corresponded to the mean current and showed that the Kuroshio intrusion occurred in the upper layers only from late December to early March. The temporal coefficient of the first and the second mode indicated clearly a dominant signal in a quasi-seasonal cycle.
Resumo:
To study the relationship between sediment transportation and saltwater intrusion in the Changjiang (Yangtze) estuary, a three-dimensional numerical model for temperature, salinity, velocity field, and suspended sediment concentration was established based on the ECOMSED model. Using this model, sediment transportation in the flood season of 2005 was simulated for the Changjiang estuary. A comparison between simulated results and observation data for the tidal level, flow velocity and direction, salinity and suspended sediment concentration indicated that they were consistent in overall. Based on model verification, the simulation of saltwater intrusion and its effect on sediment in the Changjiang estuary was analyzed in detail. The saltwater intrusion in the estuary including the formation, evolution, and disappearance of saltwater wedge and the induced vertical circulation were reproduced, and the crucial impact of the wedge on cohesive and non-cohesive suspended sediment distribution and transportation were successfully simulated. The result shows that near the salinity front, the simulated concentrations of both cohesive and non-cohesive suspended sediment at the surface layer had a strong relationship with the simulated velocity, especially when considering a 1-hour lag. However, in the bottom layer, there was no obvious correlation between them, because the saltwater wedge and its inducing vertical circulation may have resuspended loose sediment on the bed, thus forming a high-concentration area near the bottom even if the velocity near the bottom was very low during the transition phase from flood to ebb.
Resumo:
In this project we design and implement a centralized hashing table in the snBench sensor network environment. We discuss the feasibility of this approach and compare and contrast with the distributed hashing architecture, with particular discussion regarding the conditions under which a centralized architecture makes sense. There are numerous computational tasks that require persistence of data in a sensor network environment. To help motivate the need for data storage in snBench we demonstrate a practical application of the technology whereby a video camera can monitor a room to detect the presence of a person and send an alert to the appropriate authorities.
Resumo:
Since their introduction in the 1950s, marine outfalls with diffusers have been prone to saline intrusion, a process in which seawater ingresses into the outfall. This can greatly reduce the dilution and subsequent dispersion of wastewater discharged, sometimes resulting in serious deterioration of coastal water quality. Although long aware of the difficulties posed by saline intrusion, engineers still lack satisfactory methods for its prediction and robust design methods for its alleviation. However, with recent developments in numerical methods and computer power, it has been suggested that commercially available computational fluid dynamics (CFD) software may be a useful aid in combating this phenomenon by improving understanding through synthesising likely behaviour. This document reviews current knowledge on saline intrusion and its implications and then outlines a model-scale investigation of the process undertaken at Queen's University Belfast, using both physical and CFD methods. Results are presented for a simple outfall configuration, incorporating several outlets. The features observed agree with general observations from full-scale marine outfalls, and quantify the intricate internal flow mechanisms associated with saline intrusion. The two-dimensional numerical model was found to represent saline intrusion, but in a qualitative manner, not yet adequate for design purposes. Specific areas requiring further development were identified. The ultimate aim is to provide a reliable, practical and cost effective means by which engineers can minimise saline intrusion through optimised outfall design.